Volume 18 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
Rair Solis Jacome, Thomaz Anchieta, Bruno M. Brentan, Manuel Herrera, Xitlali Delgado Galvan, Jose Antonio Arciniega Nevarez, Jesus Mora Rodriguez. 2025: Core-periphery structure for district metered area partitioning in urban water distribution systems. Water Science and Engineering, 18(3): 262-273. doi: 10.1016/j.wse.2025.04.006
Citation: Rair Solis Jacome, Thomaz Anchieta, Bruno M. Brentan, Manuel Herrera, Xitlali Delgado Galvan, Jose Antonio Arciniega Nevarez, Jesus Mora Rodriguez. 2025: Core-periphery structure for district metered area partitioning in urban water distribution systems. Water Science and Engineering, 18(3): 262-273. doi: 10.1016/j.wse.2025.04.006

Core-periphery structure for district metered area partitioning in urban water distribution systems

doi: 10.1016/j.wse.2025.04.006
  • Received Date: 2024-12-18
  • Accepted Date: 2025-04-02
  • Available Online: 2025-10-15
  • As urban areas expand and water demand intensifies, the need for efficient and reliable water distribution systems becomes increasingly critical. A widely used infrastructure management approach involves partitioning water distribution networks (WDNs) into district metered areas (DMAs). However, suboptimal designs of DMA partitioning can lead to inefficiencies and increased costs. This study presents a core-periphery-informed approach for DMA design that explicitly utilises the natural division between a densely connected core and a sparsely connected periphery. Incorporating this structural framework enhances network resilience, improves water pressure stability, and optimises boundary device placement. The proposed core-periphery-informed DMA design integrates hydraulic and topological analyses to identify central and peripheral network areas, applies a community structure detection algorithm conditioned by these areas, and uses an optimisation model to determine the optimal placement of boundary devices, enhancing network resilience and reducing costs. When applied to the Modena WDN in Italy, this approach demonstrates improved pressure stability and significant cost reductions compared to traditional methods. Overall, the findings highlight the practical benefits of the core-periphery-based DMA design, offering a scalable and data-driven solution for urban water distribution systems.

     

  • loading
  • [1]
    Alves, D., Blesa, J., Duviella, E., Rajaoarisoa, L., 2023. Topological analysis of water distribution networks for optimal leak localization. IOP Conf. Ser. Earth Environ. Sci. 1136, 012043. https://doi.org/10.1088/1755-1315/1136/1/012043.
    [2]
    Alvisi, S., Franchini, M., 2014. A heuristic procedure for the automatic creation of district metered areas in water distribution systems. Urban Water J. 11(2), 137-159. https://doi.org/10.1080/1573062X.2013.768683.
    [3]
    Artina, S., Bolognesi, A., Bragalli, C., D'Ambrosio, C., Marchi, A., 2011. Comparison among best solutions of the optimal design of water distribution networks obtained with different algorithms. In: Proceedings of the 11th International Conference on Computing and Control for Water Industry. University of Exeter, Exeter, pp. 985-990.
    [4]
    Bae, S.H., Halperin, D., West, J., Rosvall, M., Howe, B., 2013. Scalable flow-based community detection for large-scale network analysis. In: Proceedings of the 2013 IEEE 13th International Conference on Data Mining Workshops. IEEE, pp. 303-310. https://doi.org/10.1109/ICDMW.2013.138. Dallas.
    [5]
    Bianchotti, J.D., Denardi, M., Castro-Gama, M., Puccini, G.D., 2021. Sectorization for water distribution systems with multiple sources: A performance indices comparison. Water 13(2), 131. https://doi.org/10.3390/w13020131.
    [6]
    Borgatti, S.P., Everett, M.G., 2000. Models of core/periphery structures. Soc. Netw. 21(4), 375-395. https://doi.org/10.1016/S0378-8733(99)00019-2.
    [7]
    Brentan, B.M., Campbell, E., Meirelles, G.L., Luvizotto, E., Izquierdo, J., 2017. Social network community detection for DMA creation: Criteria analysis through multilevel optimization. Math. Probl. Eng. 2017, 9053238. https://doi.org/10.1155/2017/9053238.
    [8]
    Brentan, B.M., Carpitella, S., Izquierdo, J., Luvizotto Jr., E., Meirelles, G., 2022. District metered area design through multicriteria and multiobjective optimization. Math. Method. Appl. Sci. 45(6), 3254-3271. https://doi.org/10.1002/mma.7090.
    [9]
    Ciaponi, C., Murari, E., Todeschini, S., 2016. Modularity-based procedure for partitioning water distribution systems into independent districts. Water Resour. Manag. 30, 2021-2036. https://doi.org/10.1007/s11269-016-1271-4.
    [10]
    Cosgrove, W.J., Loucks, D.P., 2015. Water management: Current and future challenges and research directions. Water Resour. Res. 51(6), 4823-4839. https://doi.org/10.1002/2014WR016869.
    [11]
    Csermely, P., London, A., Wu, L.Y., Uzzi, B., 2013. Structure and dynamics of core/periphery networks. J. Complex Netw. 1(2), 93-123. https://doi.org/10.1093/comnet/cnt016.
    [12]
    De Freitas Anchieta, T., Meirelles, G., Brentan, B.M., 2024. Optimal district metered areas design of water distri-bution systems: A comparative analysis among hybrid algorithms. J. Water Proc. Eng. 63, 105472. https://doi.org/10.1016/j.jwpe.2024.105472.
    [13]
    Di Nardo, A., Giudicianni, C., Greco, R., Herrera, M., Santonastaso, G.F., 2018. Applications of graph spectral techniques to water distribution network management. Water 10(1), 45. https://doi.org/10.3390/w10010045.
    [14]
    Diao, K., Zhou, Y., Rauch, W., 2013. Automated creation of district metered area boundaries in water distribution systems. J. Water Resour. Plann. Manag. 139(2), 184-190. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000247.
    [15]
    Duan, H.F., Yu, G.P., 2010. Spanning tree-based algorithm for hydraulic simulation of large-scale water supply networks. Water Sci. Eng. 3(1), 23-35. https://doi.org/10.3882/j.issn.1674-2370.2010.01.003.
    [16]
    Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. IEEE, Nagoya, pp. 39-43.
    [17]
    Elliott, A., Chiu, A., Bazzi, M., Reinert, G., Cucuringu, M., 2020. Core-periphery structure in directed networks. Proc. R. Soc. A 476(2241), 20190783. https://doi.org/10.1098/rspa.2019.0783.
    [18]
    Farley, M., 2001. Leakage Management and Control: A Best Practice Training Manual. World Health Organization, Geneva.
    [19]
    Ferrari, G., Savic, D., Becciu, G., 2014. Graph-theoretic approach and sound engineering principles for design of district metered areas. J. Water Resour. Plann. Manag. 140(12), 04014036. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000424.
    [20]
    Fortunato, S., Castellano, C., 2012. Community structure in graphs. In:
    [21]
    Meyers, R. (Ed.), Computational Complexity. Springer, New York. https://doi.org/10.1007/978-1-4614-1800-9_33.
    [22]
    Gallagher, R.J., Young, J.G., Welles, B.F., 2021. A clarified typology of core-periphery structure in networks. Sci. Adv. 7(12), eabc9800. https://doi.org/10.1126/sciadv.abc9800.
    [23]
    Gilbert, D., Abraham, E., Montalvo, I., Piller, O., 2017. Iterative multistage method for a large water network sectorization into DMAs under multiple design objectives. J. Water Resour. Plann. Manag. 143(11), 04017067. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000835.
    [24]
    Giudicianni, C., Herrera, M., Di Nardo, A., Adeyeye, K., 2020a. Automatic multiscale approach for water networks partitioning into dynamic district metered areas. Water Resour. Manag. 34, 835-848. https://doi.org/10.1007/s11269-019-02470-x.
    [25]
    Giudicianni, C., Herrera, M., Di Nardo, A., Carravetta, A., Ramos, H.M.,
    [26]
    Adeyeye, K., 2020b. Zero-net energy management for the monitoring and control of dynamically partitioned smart water systems. J. Clean. Prod. 252, 119745. https://doi.org/10.1016/j.jclepro.2019.119745.
    [27]
    Giudicianni, C., Herrera, M., Di Nardo, A., Oliva, G., Scala, A., 2021. The faster the better: On the shortest paths role for near real-time decision making of water utilities. Reliab. Eng. Syst. Saf. 212, 107589. https://doi.org/10.1016/j.ress.2021.107589.
    [28]
    Gomes, R., Marques, A.S., Sousa, J., 2012. Decision support system to divide a large network into suitable district metered areas. Water Sci. Technol. 65(9), 1667-1675. https://doi.org/10.2166/wst.2012.050.
    [29]
    Gomes, R., Marques, A.S., Sousa, J., 2013. District metered areas design under different decision makers' options: Cost analysis. Water Resour. Manag. 27, 4527-4543. https://doi.org/10.1007/s11269-013-0420-2.
    [30]
    Hajebi, S., Temate, S., Barrett, S., Clarke, A., Clarke, S., 2014. Water distri-bution network sectorisation using structural graph partitioning and multi-objective optimization. Procedia Eng. 89, 1144-1151. https://doi.org/10.1016/j.proeng.2014.11.234.
    [31]
    Han, Z., Ma, D., Hou, B., Wang, W., 2020. Seismic resilience enhancement of urban water distribution system using restoration priority of pipeline damages. Sustainability 12(3), 914. https://doi.org/10.3390/su12030914.
    [32]
    Heris, M.P., 2017. Evaluating metropolitan spatial development: A method for identifying settlement types and depicting growth patterns. Reg. Stud. Reg. Sci. 4(1), 7-25. https://doi.org/10.1080/21681376.2016.1266285.
    [33]
    Herrera, M., 2011. Improving Water Network Management by Efficient Division into Supply Clusters. Ph.D. Dissertation. Universitat Politecnica de València, València.
    [34]
    Janga Reddy, M., Kumar, D.N., 2020. Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: A state-of-the-art review. H2Open J. 3(1), 135-188. https://doi.org/10.2166/h2oj.2020.128.
    [35]
    Kadu, M.S., Gupta, R., Bhave, P.R., 2008. Optimal design of water networks using a modified genetic algorithm with reduction in search space. J. Water Resour. Plann. Manag. 134(2), 147-160. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(147).
    [36]
    Khoa Bui, X., Marlim, M.S., Kang, D., 2020. Water network partitioning into district metered areas: A state-of-the-art review. Water 12(4), 1002. https://doi.org/10.3390/w12041002.
    [37]
    Liu, H., Zhao, M., Zhang, C., Fu, G., 2018. Comparing topological partitioning methods for district metered areas in the water distribution network. Water 10(4), 368. https://doi.org/10.3390/w10040368.
    [38]
    Liu, J., Lansey, K.E., 2020. Multiphase DMA design methodology based on graph theory and many-objective optimization. J. Water Resour. Plann. Manag. 146(8), 04020068. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001267.
    [39]
    Luo, F., Li, B., Wan, X.F., Scheuermann, R.H., 2009. Core and periphery structures in protein interaction networks. BMC Bioinf. 10, 1-11. https://doi.org/10.1186/1471-2105-10-S1-S8.
    [40]
    Monsef, H., Naghashzadegan, M., Jamali, A., Farmani, R., 2019. Comparison of evolutionary multi-objective optimization algorithms in optimum design of water distribution network. Ain Shams Eng. J. 10(1), 103-111. https://doi.org/10.1016/j.asej.2018.08.002.
    [41]
    Montalvo, I., Izquierdo, J., Pérez-García, R., Herrera, M., 2010. Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems. Eng. Appl. Artif. Intell. 23(5), 727-735. https://doi.org/10.1016/j.engappai.2010.01.019.
    [42]
    Newman, M.E.J., 2004. Fast algorithm for detecting community structure in networks. Phys. Rev. 69(6), 066133. https://doi.org/10.1103/PhysRevE.69. 066133.
    [43]
    Perelman, L.S., Allen, M., Preis, A., Iqbal, M., Whittle, A.J., 2015. Automated sub-zoning of water distribution systems. Environ. Model. Software 65, 1-14. https://doi.org/10.1016/j.envsoft.2014.11.024.
    [44]
    Pesantez, J.E., Berglund, E.Z., Mahinthakumar, G., 2019. Multiphase procedure to design district metered areas for water distribution networks. J. Water Resour. Plann. Manag. 145(8), 04019031. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001095.
    [45]
    Presti, J.L., Giudicianni, C., Toffanin, C., Creaco, E., Magni, L., Galuppini, G., 2024. Combining clustering and regularised neural network for burst detection and localization and flow/pressure sensor placement in water distribution networks. J. Water Proc. Eng. 63, 105473. https://doi.org/10.1016/j.jwpe.2024.105473.
    [46]
    Quiñones-Grueiro, M., Milián, M.A., Rivero, M.S., Silva Neto, A.J., Llanes-Santiago, O., 2021. Robust leak localization in water distribution networks using computational intelligence. Neurocomputing 438, 195-208. https://doi.org/10.1016/j.neucom.2020.05.130.
    [47]
    Rahmani, F., Muhammed, K., Behzadian, K., Farmani, R., 2018. Optimal operation of water distribution systems using a graph theory-based configuration of district metered areas. J. Water Resour. Plann. Manag. 144(8), 04018042. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000941.
    [48]
    Rajeswaran, A., Narasimhan, S., Narasimhan, S., 2018. A graph partitioning algorithm for leak detection in water distribution networks. Comput. Chem. Eng. 108, 11-23. https://doi.org/10.1016/j.compchemeng.2017.08.012.
    [49]
    Ramos, H.M., Vieira, F., Covas, D.I.C., 2010. Energy efficiency in a water supply system: Energy consumption and CO2 emission. Water Sci. Eng. 3(3), 331-340. https://doi.org/10.3882/j.issn.1674-2370.2010.03.010.
    [50]
    Sharma, A.N., Dongre, S.R., Gupta, R., 2023. Many-objective optimisation tool for the design of district metered areas in pumped water distribution networks. Water Supply 23(9), 3789-3804. https://doi.org/10.2166/ws.2023.208.
    [51]
    Shekofteh, M.R., Yousefi-Khoshqalb, E., Piratla, K.R., 2023. An efficient approach for partitioning water distribution networks using multi-objective optimization and graph theory. Water Resour. Manag. 37(13), 5007-5022. https://doi.org/10.1007/s11269-023-03582-1.
    [52]
    Vrachimis, S.G., Eliades, D.G., Taormina, R., Kapelan, Z., Ostfeld, A., Liu, S.,
    [53]
    Kyriakou, M., Pavlou, P., Qiu, M., Polycarpou, M.M., 2022. Battle of the leakage detection and isolation methods. J. Water Resour. Plann. Manag. 148(12), 04022068. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001601.
    [54]
    Zeidan, M., Li, P., Ostfeld, A., 2021. DMA segmentation and multiobjective optimization for trading off water age, excess pressure, and pump operational cost in water distribution systems. J. Water Resour. Plann. Manag. 147(4), 04021006. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001344.
    [55]
    Zhang, J., Fei, J., Song, X., Feng, J., 2021a. An improved Louvain algorithm for community detection. Math. Probl. Eng. 2021(1), 1485592. https://doi.org/10.1155/2021/1485592.
    [56]
    Zhang, Q., Wu, Z.Y., Zhao, M., Qi, J., Huang, Y., Zhao, H., 2017. Automatic partitioning of water distribution networks using multiscale community detection and multiobjective optimization. J. Water Resour. Plann. Manag. 143(9), 04017057. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000819.
    [57]
    Zhang, T., Yao, H., Chu, S., Yu, T., Shao, Y., 2021b. Optimized DMA partition to reduce background leakage rate in water distribution networks. J. Water Resour. Plann. Manag. 147(10), 04021071. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001465.
    [58]
    Zhang, X., Martin, T., Newman, M.E.J., 2015. Identification of core-periphery structure in networks. Phys. Rev. 91(3), 032803. https://doi.org/10.1103/PhysRevE.91.032803.
    [59]
    Zhong, C., Schlöapfer, M., Arisona, S.M., Batty, M., Ratti, C., Schmitt, G., 2017. Revealing centrality in the spatial structure of cities from human activity patterns. Urban Stud. 54(2), 437-455. https://doi.org/10.1177/0042098015601599.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return