Citation: | Rair Solis Jacome, Thomaz Anchieta, Bruno M. Brentan, Manuel Herrera, Xitlali Delgado Galvan, Jose Antonio Arciniega Nevarez, Jesus Mora Rodriguez. 2025: Core-periphery structure for district metered area partitioning in urban water distribution systems. Water Science and Engineering, 18(3): 262-273. doi: 10.1016/j.wse.2025.04.006 |
[1] |
Alves, D., Blesa, J., Duviella, E., Rajaoarisoa, L., 2023. Topological analysis of water distribution networks for optimal leak localization. IOP Conf. Ser. Earth Environ. Sci. 1136, 012043. https://doi.org/10.1088/1755-1315/1136/1/012043.
|
[2] |
Alvisi, S., Franchini, M., 2014. A heuristic procedure for the automatic creation of district metered areas in water distribution systems. Urban Water J. 11(2), 137-159. https://doi.org/10.1080/1573062X.2013.768683.
|
[3] |
Artina, S., Bolognesi, A., Bragalli, C., D'Ambrosio, C., Marchi, A., 2011. Comparison among best solutions of the optimal design of water distribution networks obtained with different algorithms. In: Proceedings of the 11th International Conference on Computing and Control for Water Industry. University of Exeter, Exeter, pp. 985-990.
|
[4] |
Bae, S.H., Halperin, D., West, J., Rosvall, M., Howe, B., 2013. Scalable flow-based community detection for large-scale network analysis. In: Proceedings of the 2013 IEEE 13th International Conference on Data Mining Workshops. IEEE, pp. 303-310. https://doi.org/10.1109/ICDMW.2013.138. Dallas.
|
[5] |
Bianchotti, J.D., Denardi, M., Castro-Gama, M., Puccini, G.D., 2021. Sectorization for water distribution systems with multiple sources: A performance indices comparison. Water 13(2), 131. https://doi.org/10.3390/w13020131.
|
[6] |
Borgatti, S.P., Everett, M.G., 2000. Models of core/periphery structures. Soc. Netw. 21(4), 375-395. https://doi.org/10.1016/S0378-8733(99)00019-2.
|
[7] |
Brentan, B.M., Campbell, E., Meirelles, G.L., Luvizotto, E., Izquierdo, J., 2017. Social network community detection for DMA creation: Criteria analysis through multilevel optimization. Math. Probl. Eng. 2017, 9053238. https://doi.org/10.1155/2017/9053238.
|
[8] |
Brentan, B.M., Carpitella, S., Izquierdo, J., Luvizotto Jr., E., Meirelles, G., 2022. District metered area design through multicriteria and multiobjective optimization. Math. Method. Appl. Sci. 45(6), 3254-3271. https://doi.org/10.1002/mma.7090.
|
[9] |
Ciaponi, C., Murari, E., Todeschini, S., 2016. Modularity-based procedure for partitioning water distribution systems into independent districts. Water Resour. Manag. 30, 2021-2036. https://doi.org/10.1007/s11269-016-1271-4.
|
[10] |
Cosgrove, W.J., Loucks, D.P., 2015. Water management: Current and future challenges and research directions. Water Resour. Res. 51(6), 4823-4839. https://doi.org/10.1002/2014WR016869.
|
[11] |
Csermely, P., London, A., Wu, L.Y., Uzzi, B., 2013. Structure and dynamics of core/periphery networks. J. Complex Netw. 1(2), 93-123. https://doi.org/10.1093/comnet/cnt016.
|
[12] |
De Freitas Anchieta, T., Meirelles, G., Brentan, B.M., 2024. Optimal district metered areas design of water distri-bution systems: A comparative analysis among hybrid algorithms. J. Water Proc. Eng. 63, 105472. https://doi.org/10.1016/j.jwpe.2024.105472.
|
[13] |
Di Nardo, A., Giudicianni, C., Greco, R., Herrera, M., Santonastaso, G.F., 2018. Applications of graph spectral techniques to water distribution network management. Water 10(1), 45. https://doi.org/10.3390/w10010045.
|
[14] |
Diao, K., Zhou, Y., Rauch, W., 2013. Automated creation of district metered area boundaries in water distribution systems. J. Water Resour. Plann. Manag. 139(2), 184-190. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000247.
|
[15] |
Duan, H.F., Yu, G.P., 2010. Spanning tree-based algorithm for hydraulic simulation of large-scale water supply networks. Water Sci. Eng. 3(1), 23-35. https://doi.org/10.3882/j.issn.1674-2370.2010.01.003.
|
[16] |
Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. IEEE, Nagoya, pp. 39-43.
|
[17] |
Elliott, A., Chiu, A., Bazzi, M., Reinert, G., Cucuringu, M., 2020. Core-periphery structure in directed networks. Proc. R. Soc. A 476(2241), 20190783. https://doi.org/10.1098/rspa.2019.0783.
|
[18] |
Farley, M., 2001. Leakage Management and Control: A Best Practice Training Manual. World Health Organization, Geneva.
|
[19] |
Ferrari, G., Savic, D., Becciu, G., 2014. Graph-theoretic approach and sound engineering principles for design of district metered areas. J. Water Resour. Plann. Manag. 140(12), 04014036. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000424.
|
[20] |
Fortunato, S., Castellano, C., 2012. Community structure in graphs. In:
|
[21] |
Meyers, R. (Ed.), Computational Complexity. Springer, New York. https://doi.org/10.1007/978-1-4614-1800-9_33.
|
[22] |
Gallagher, R.J., Young, J.G., Welles, B.F., 2021. A clarified typology of core-periphery structure in networks. Sci. Adv. 7(12), eabc9800. https://doi.org/10.1126/sciadv.abc9800.
|
[23] |
Gilbert, D., Abraham, E., Montalvo, I., Piller, O., 2017. Iterative multistage method for a large water network sectorization into DMAs under multiple design objectives. J. Water Resour. Plann. Manag. 143(11), 04017067. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000835.
|
[24] |
Giudicianni, C., Herrera, M., Di Nardo, A., Adeyeye, K., 2020a. Automatic multiscale approach for water networks partitioning into dynamic district metered areas. Water Resour. Manag. 34, 835-848. https://doi.org/10.1007/s11269-019-02470-x.
|
[25] |
Giudicianni, C., Herrera, M., Di Nardo, A., Carravetta, A., Ramos, H.M.,
|
[26] |
Adeyeye, K., 2020b. Zero-net energy management for the monitoring and control of dynamically partitioned smart water systems. J. Clean. Prod. 252, 119745. https://doi.org/10.1016/j.jclepro.2019.119745.
|
[27] |
Giudicianni, C., Herrera, M., Di Nardo, A., Oliva, G., Scala, A., 2021. The faster the better: On the shortest paths role for near real-time decision making of water utilities. Reliab. Eng. Syst. Saf. 212, 107589. https://doi.org/10.1016/j.ress.2021.107589.
|
[28] |
Gomes, R., Marques, A.S., Sousa, J., 2012. Decision support system to divide a large network into suitable district metered areas. Water Sci. Technol. 65(9), 1667-1675. https://doi.org/10.2166/wst.2012.050.
|
[29] |
Gomes, R., Marques, A.S., Sousa, J., 2013. District metered areas design under different decision makers' options: Cost analysis. Water Resour. Manag. 27, 4527-4543. https://doi.org/10.1007/s11269-013-0420-2.
|
[30] |
Hajebi, S., Temate, S., Barrett, S., Clarke, A., Clarke, S., 2014. Water distri-bution network sectorisation using structural graph partitioning and multi-objective optimization. Procedia Eng. 89, 1144-1151. https://doi.org/10.1016/j.proeng.2014.11.234.
|
[31] |
Han, Z., Ma, D., Hou, B., Wang, W., 2020. Seismic resilience enhancement of urban water distribution system using restoration priority of pipeline damages. Sustainability 12(3), 914. https://doi.org/10.3390/su12030914.
|
[32] |
Heris, M.P., 2017. Evaluating metropolitan spatial development: A method for identifying settlement types and depicting growth patterns. Reg. Stud. Reg. Sci. 4(1), 7-25. https://doi.org/10.1080/21681376.2016.1266285.
|
[33] |
Herrera, M., 2011. Improving Water Network Management by Efficient Division into Supply Clusters. Ph.D. Dissertation. Universitat Politecnica de València, València.
|
[34] |
Janga Reddy, M., Kumar, D.N., 2020. Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: A state-of-the-art review. H2Open J. 3(1), 135-188. https://doi.org/10.2166/h2oj.2020.128.
|
[35] |
Kadu, M.S., Gupta, R., Bhave, P.R., 2008. Optimal design of water networks using a modified genetic algorithm with reduction in search space. J. Water Resour. Plann. Manag. 134(2), 147-160. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(147).
|
[36] |
Khoa Bui, X., Marlim, M.S., Kang, D., 2020. Water network partitioning into district metered areas: A state-of-the-art review. Water 12(4), 1002. https://doi.org/10.3390/w12041002.
|
[37] |
Liu, H., Zhao, M., Zhang, C., Fu, G., 2018. Comparing topological partitioning methods for district metered areas in the water distribution network. Water 10(4), 368. https://doi.org/10.3390/w10040368.
|
[38] |
Liu, J., Lansey, K.E., 2020. Multiphase DMA design methodology based on graph theory and many-objective optimization. J. Water Resour. Plann. Manag. 146(8), 04020068. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001267.
|
[39] |
Luo, F., Li, B., Wan, X.F., Scheuermann, R.H., 2009. Core and periphery structures in protein interaction networks. BMC Bioinf. 10, 1-11. https://doi.org/10.1186/1471-2105-10-S1-S8.
|
[40] |
Monsef, H., Naghashzadegan, M., Jamali, A., Farmani, R., 2019. Comparison of evolutionary multi-objective optimization algorithms in optimum design of water distribution network. Ain Shams Eng. J. 10(1), 103-111. https://doi.org/10.1016/j.asej.2018.08.002.
|
[41] |
Montalvo, I., Izquierdo, J., Pérez-García, R., Herrera, M., 2010. Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems. Eng. Appl. Artif. Intell. 23(5), 727-735. https://doi.org/10.1016/j.engappai.2010.01.019.
|
[42] |
Newman, M.E.J., 2004. Fast algorithm for detecting community structure in networks. Phys. Rev. 69(6), 066133. https://doi.org/10.1103/PhysRevE.69. 066133.
|
[43] |
Perelman, L.S., Allen, M., Preis, A., Iqbal, M., Whittle, A.J., 2015. Automated sub-zoning of water distribution systems. Environ. Model. Software 65, 1-14. https://doi.org/10.1016/j.envsoft.2014.11.024.
|
[44] |
Pesantez, J.E., Berglund, E.Z., Mahinthakumar, G., 2019. Multiphase procedure to design district metered areas for water distribution networks. J. Water Resour. Plann. Manag. 145(8), 04019031. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001095.
|
[45] |
Presti, J.L., Giudicianni, C., Toffanin, C., Creaco, E., Magni, L., Galuppini, G., 2024. Combining clustering and regularised neural network for burst detection and localization and flow/pressure sensor placement in water distribution networks. J. Water Proc. Eng. 63, 105473. https://doi.org/10.1016/j.jwpe.2024.105473.
|
[46] |
Quiñones-Grueiro, M., Milián, M.A., Rivero, M.S., Silva Neto, A.J., Llanes-Santiago, O., 2021. Robust leak localization in water distribution networks using computational intelligence. Neurocomputing 438, 195-208. https://doi.org/10.1016/j.neucom.2020.05.130.
|
[47] |
Rahmani, F., Muhammed, K., Behzadian, K., Farmani, R., 2018. Optimal operation of water distribution systems using a graph theory-based configuration of district metered areas. J. Water Resour. Plann. Manag. 144(8), 04018042. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000941.
|
[48] |
Rajeswaran, A., Narasimhan, S., Narasimhan, S., 2018. A graph partitioning algorithm for leak detection in water distribution networks. Comput. Chem. Eng. 108, 11-23. https://doi.org/10.1016/j.compchemeng.2017.08.012.
|
[49] |
Ramos, H.M., Vieira, F., Covas, D.I.C., 2010. Energy efficiency in a water supply system: Energy consumption and CO2 emission. Water Sci. Eng. 3(3), 331-340. https://doi.org/10.3882/j.issn.1674-2370.2010.03.010.
|
[50] |
Sharma, A.N., Dongre, S.R., Gupta, R., 2023. Many-objective optimisation tool for the design of district metered areas in pumped water distribution networks. Water Supply 23(9), 3789-3804. https://doi.org/10.2166/ws.2023.208.
|
[51] |
Shekofteh, M.R., Yousefi-Khoshqalb, E., Piratla, K.R., 2023. An efficient approach for partitioning water distribution networks using multi-objective optimization and graph theory. Water Resour. Manag. 37(13), 5007-5022. https://doi.org/10.1007/s11269-023-03582-1.
|
[52] |
Vrachimis, S.G., Eliades, D.G., Taormina, R., Kapelan, Z., Ostfeld, A., Liu, S.,
|
[53] |
Kyriakou, M., Pavlou, P., Qiu, M., Polycarpou, M.M., 2022. Battle of the leakage detection and isolation methods. J. Water Resour. Plann. Manag. 148(12), 04022068. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001601.
|
[54] |
Zeidan, M., Li, P., Ostfeld, A., 2021. DMA segmentation and multiobjective optimization for trading off water age, excess pressure, and pump operational cost in water distribution systems. J. Water Resour. Plann. Manag. 147(4), 04021006. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001344.
|
[55] |
Zhang, J., Fei, J., Song, X., Feng, J., 2021a. An improved Louvain algorithm for community detection. Math. Probl. Eng. 2021(1), 1485592. https://doi.org/10.1155/2021/1485592.
|
[56] |
Zhang, Q., Wu, Z.Y., Zhao, M., Qi, J., Huang, Y., Zhao, H., 2017. Automatic partitioning of water distribution networks using multiscale community detection and multiobjective optimization. J. Water Resour. Plann. Manag. 143(9), 04017057. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000819.
|
[57] |
Zhang, T., Yao, H., Chu, S., Yu, T., Shao, Y., 2021b. Optimized DMA partition to reduce background leakage rate in water distribution networks. J. Water Resour. Plann. Manag. 147(10), 04021071. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001465.
|
[58] |
Zhang, X., Martin, T., Newman, M.E.J., 2015. Identification of core-periphery structure in networks. Phys. Rev. 91(3), 032803. https://doi.org/10.1103/PhysRevE.91.032803.
|
[59] |
Zhong, C., Schlöapfer, M., Arisona, S.M., Batty, M., Ratti, C., Schmitt, G., 2017. Revealing centrality in the spatial structure of cities from human activity patterns. Urban Stud. 54(2), 437-455. https://doi.org/10.1177/0042098015601599.
|