Citation: | Ke Zhang, Zhi-lin Li, Wu-zhi Shi, Ran Tao, Xu Yang, Yi-ming Huang. 2025: Spatiotemporal changes and interconnections between meteorological and hydrological droughts in China over past 34 years. Water Science and Engineering, 18(3): 274-287. doi: 10.1016/j.wse.2025.04.007 |
[1] |
Alahacoon, N., Edirisinghe, M., 2022. A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomat. Nat. Hazards Risk 13(1), 762-799. https://doi.org/10.1080/19475705.2022.2044394.
|
[2] |
Bao, H.J., Wang, L.L., Zhang, K., Li, Z.J., 2017. Application of a developed distributed hydrological model based on the mixed runoff generation model and 2D kinematic wave flow routing model for better flood fore-casting. Atmos. Sci. Lett. 18(7), 284-293. https://doi.org/10.1002/asl.754.
|
[3] |
Bao, Z.X., Zhang, J.Y., Yan, X.L., Wang, G.Q., He, R.M., Guan, T.S., Liu, Y.L., 2021. Quantitative assessment of the attribution of runoff change caused by four factors in the Haihe River basin. Adv. Water Sci. 32(2), 171-181 (in Chinese). https://doi.org/10.14042/j.cnki.32.1309.2021.02.002.
|
[4] |
Cao, Y., Zhang, K., Li, Z.J., Zhang, W.J., Zhang, J., 2021. Study on spatio-temporal variability and changes of key water cycle elements in the Three River source area of Ningxia from 2000 to 2017. J. China Hydrol. 41(3), 88-94 (in Chinese). https://doi.org/10.19797/j.cnki.1000-0852.20200331.
|
[5] |
Chao, L.J., Zhang, K., Li, Z.J., Wang, J.F., Yao, C., Li, Q.L., 2019. Applicability assessment of the CASCade Two Dimensional SEDiment (CASC2D-SED) distributed hydrological model for flood forecasting across four typical medium and small watersheds in China. J. Flood Risk Manage. 12(S1), e12518. https://doi.org/10.1111/jfr3.12518.
|
[6] |
Cheng, Y.J., Zhang, K., Chao, L.J., Shi, W.Z., Feng, J., Li, Y.P., 2023. A comprehensive drought index based on remote sensing data and nested copulas for monitoring meteorological and agroecological droughts: A case study on the Qinghai-Tibet Plateau. Environ. Model. Software 161, 105629. https://doi.org/10.1016/j.envsoft.2023.105629.
|
[7] |
Compilation group of China Flood and Drought Disaster Prevention Bulletin, 2022. Summary of China flood and drought disaster prevention Bulletin 2021. China Flood Drought Manage. 32(9), 38-45 (in Chinese). https://doi.org/10.16867/j.issn.1673-9264.2022362.
|
[8] |
Dai, Y.J., Wei, S.G., Duan, Q.Y., Liu, B.Y., Niu, G.Y., 2013. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol. 14(3), 869-887. https://doi.org/10.1175/JHM-D-12-0149.1.
|
[9] |
Ezaz, G.T., Zhang, K., Li, X., Shalehy, M.H., Mohammad, A., Liu, L.X., 2022. Spatiotemporal changes of precipitation extremes in Bangladesh during 1987-2017 and their connections with climate changes, climate oscillations, and monsoon dynamics. Global Planet. Change 208, 103712. https://doi.org/10.1016/j.gloplacha.2021.103712.
|
[10] |
Ge, C., Sun, P., Yao, R., Wang, Y., Chen, W., Bian, Y., Zhang, Q., 2024. Characteristics of propagation from meteorological drought to ecological drought in China: Lag and cumulative effects. Atmos. Res. 304, 107405. https://doi.org/10.1016/j.atmosres.2024.107405.
|
[11] |
Guo, X.M., Tong, S.Q., Bao, Y.H., Ren, J.Y., 2021. Spatial and temporal variation trend analysis of drought in Inner Mongolia in the past 55 years based on SPEI. Geomat. World 28(3), 42-48 (in Chinese).
|
[12] |
Han, Z., 2022. Study on the Evolution Characteristics and Propagation Process of Multi-Type Drought in China. Xi’an University of Technology, Xi’an.
|
[13] |
Hansen, M.C., Defries, R.S., Townshend, J., Sohlberg, R.A., 2000. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Rem. Sens. 21(6-7), 1331-1364. https://doi.org/10.1080/014311600210209.
|
[14] |
Haslinger, K., Koffler, D., Schner, W., Laaha, G., 2014. Exploring the link between meteorological drought and streamflow: Effects of climateecatchment interaction. Water Resour. Res. 50(3), 2468-2487. https://doi.org/10.1002/2013WR015051.
|
[15] |
He, J., Yang, X.H., Li, Z., Zhang, X.J., Tang, Q.H., 2016. Spatiotemporal variations of meteorological droughts in China during 1961-2014: An investigation based on multi-threshold identification. Int. J. Disaster Risk Sci. 7(1), 63-76. https://doi.org/10.1007/s13753-016-0083-8.
|
[16] |
Huang, Y., Chen, X., Ma, Y.G., 2010. Simulation and uncertainty study of runoff in the headwaters of the Tarim River. J. Desert Res. 30(5), 1234-1238 (in Chinese).
|
[17] |
Iglesias, I., 2018. Spatio-temporal Kriging analysis to identify the role of wild boar in the spread of African swine fever in the Russian Federation. Spat. Stat. 28, 226-235. https://doi.org/10.1016/j.spasta.2018.07.002. Intergovernmental Panel on Climate Change (IPCC), 2021. Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge.
|
[18] |
Jin, P., 2022. Temporal and Spatial Variation Characteristics of Drought in China and Typical Flash Drought Event Research. Zhengzhou University, Zhengzhou.
|
[19] |
Kendall, M.G., 1990. Rank correlation methods. Br. J. Psychol. 25(1), 86-91. https://doi.org/10.2307/2333282.
|
[20] |
Li, J.Z., Guo, Y.G., Wang, Y.X., Lu, S.L., Chen, X., 2018. Drought propagation patterns under naturalized condition using daily hydrometeorological data. Adv. Meteorol. 2018(3), 2469156. https://doi.org/10.1155/2018/2469156.
|
[21] |
Li, M., Ge, C.H., Deng, Y.Y., Wang, G.W., Chai, X.R., 2020. Meteorological and agricultural drought characteristics and their relationship across the Loess Plateau. Sci. Geogr. Sin. 40(12), 2105-2114. https://doi.org/10.13249/j.cnki.sgs.2020.12.017.
|
[22] |
Li, X., Zhang, K., Gu, P.R., Feng, H.T., Yin, Y.F., Chen, W., Cheng, B.C., 2021. Changes in precipitation extremes in the Yangtze River Basin during 1960-2019 and the association with global warming, ENSO, and local effects. Sci. Total Environ. 760, 144244. https://doi.org/10.1016/j.scitotenv.2020.144244.
|
[23] |
Li, Z., Li, X., Zhang, D., Lin, Y.L., 2022. Copula based hydrological drought probability analysis in the Lake Dongting-catchment-Yangtze River system. J. Lake Sci. 34(4), 1319-1334 (in Chinese). https://doi.org/10.18307/2022.0423.
|
[24] |
Liang, L.L., Gong, J.G., Ye, Y.T., Xu, H.Q., 2014. Method of water resources assessment in ungauged areas based on the distributed hydrological model of SWAT. J. China Inst. Water Resour. Hydropower Res. 12(1), 54-59 (in Chinese). https://doi.org/10.13244/j.cnki.jiwhr.2014.01.009.
|
[25] |
Liu, C.Z., Liu, Z.Y., Xie, Z.H., 2004. Study of trends in runoff for the Haihe River Basin in recent 50 years. J. Appl. Meteorol. Sci. 15(4), 385-393.
|
[26] |
Lohmann, D., Raschke, E., Nijssen, B., Lettenmaier, D.P., 1998. Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrological Sciences Journal 43(1), 131-141. https://doi.org/10.1080/02626669809492107.
|
[27] |
Loon, A.F.V., Huijgevoort, M.H.J.V., Lanen, H.A.J.V., 2012. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models. Hydrol. Earth Syst. Sci. 16(11), 4057-4078. https://doi.org/10.5194/hess-16-4057-2012.
|
[28] |
Ma, F., Luo, L.F., Ye, A.Z., Duan, Q.Y., 2019. Drought characteristics and propagation in the semiarid Heihe River Basin in northwestern China. J. Hydrometeorol. 20(1), 59-77. https://doi.org/10.1175/JHM-D-18-0129.1.
|
[29] |
Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13(3), 245-259. https://doi.org/10.2307/1907187.
|
[30] |
Mckee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the Eighth Conference on Applied Climatology. American Meteorological Society, Anaheim, pp. 17-22.
|
[31] |
Mohmmed, A., Zhang, K., Kabenge, M., Keesstra, S., Cerdà, A., Reuben, M.E., Mohammed, M.A.D.T., Ali, A.A.S., 2018. Analysis of drought and vulnerability in the North Darfur region of Sudan. Land Degrad. Dev. 29(12), 4424-4438. https://doi.org/10.1002/ldr.3180.
|
[32] |
Ren, L.L., Shen, H.R., Yuan, F., Zhao, C.X., Yang, X.L., Zheng, P.L., 2016. Hydrological drought characteristics in the Weihe Catchment in a changing environment. Adv. Water Sci. 27(4), 492-500 (in Chinese). https://doi.org/10.14042/j.cnki.32.1309.2016.04.002.
|
[33] |
Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 63(324), 1379. https://doi.org/10.1080/01621459.1968.10480934.
|
[34] |
Shi, P., Zhan, H.J., Qu, S.M., Feng, J., Guan, X.X., 2022. Correlation analysis of meteorological and hydrological droughts in Yellow River source region. Water Resour. Prot. 38(3), 80-86 (in Chinese).
|
[35] |
Shi, P.F., Yang, T., Zhang, K., Tang, Q.H., Yu, Z.B., Zhou, X.D., 2016. Large-scale climate patterns and precipitation in an arid endorheic region: Linkage and underlying mechanism. Environ. Res. Lett. 11(4), 044006. https://doi.org/10.1088/1748-9326/11/4/044006.
|
[36] |
Shi, X.Z., Yu, D.S., Warner, E.D., Pan, X.Z., Petersen, G.W., Gong, Z.G., Weindorf, D.C., 2004. Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Surv. Horiz. 45(4), 129-136. https://doi.org/10.2136/sh2004.4.0129.
|
[37] |
Shukla, S., Wood, A.W., 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 35(2), L02405. https://doi.org/10.1029/2007GL032487. Standardization Administration of China, 2017. Specifications for Surface Meteorological Observation (GB/T 35221-2017). Standardization Administration of China, Beijing.
|
[38] |
Su, X.L., Zhang, G.X., Feng, K., 2019. Progress and perspective of drought index. J. Water Resour. Archit. Eng. 17(5), 9-18 (in Chinese).
|
[39] |
Sun, J.K., 2021. Analysis on drought characteristics in the Hunhe River Basin based on SRI. Pearl River 42(2), 25-30 (in Chinese).
|
[40] |
Sun, L., Li, Z.J., Zhang, K., Jiang, T.T., 2020. Impacts of precipitation and topographic conditions on the model simulation in the north of China. Water Supply 21(3), 1025-1035. https://doi.org/10.2166/ws.2020.284.
|
[41] |
Sun, P., Liu, R., Yao, R., Shen, H., Bian, Y., 2023. Responses of agricultural drought to meteorological drought under different climatic zones and vegetation types. J. Hydrol. 619, 129305. https://doi.org/10.1016/j.jhydrol.2023.129305.
|
[42] |
Tan, C.P., Yang, J.P., Li, M., 2015. Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere 6(10), 1399-1421. https://doi.org/10.3390/atmos6101399.
|
[43] |
Tao, R., Zhang, K., 2020. PDSI-based analysis of characteristics and spatio-temporal changes of meteorological drought in China from 1982 to 2015. Water Resour. Prot. 36(5), 50-56 (in Chinese). https://doi.org/10.3880/j.issn.1004-6933.2020.05.008.
|
[44] |
Troy, J.T., Wood, E.F., Sheffield, J., 2008. An efficient calibration method for continental-scale land surface modeling. Water Resour. Res. 44(9), W09411. https://doi.org/10.1029/2007WR006513.
|
[45] |
Wang, H., He, H., Wu, Z.Y., Xu, Z.G., Zhang, Y.L., 2022. Study on the applicability of VIC model in hydrological simulation of seasonally frozen ground regions. Hubei Agric. Sci. 61(8), 35-42 (in Chinese). https://doi.org/10.14088/j.cnki.issn0439-8114.2022.08.006.
|
[46] |
Wang, H.D., Huang, L.Y., Zhu, S.R., Luo, B., 2021. Intercomparison of area rainfall spatial interpolation in Sanxia Region. Water Resour. Informatization 2021(1), 26-29 (in Chinese). https://doi.org/10.19364/j.1674-9405.2021.01.006.
|
[47] |
Wu, J.W., Miao, C.Y., Zheng, H.Y., Duan, Q.Y., Lei, X.H., Li, H., 2018. Meteorological and hydrological drought on the Loess Plateau, China: Evolutionary characteristics, impact, and propagation. J. Geophys. Res. Atmos. 123(20), 11569-11584. https://doi.org/10.1029/2018JD029145.
|
[48] |
Xu, X.Y., Xu, K., Yang, D.W., Li, J.Q., 2019. Drought identification and drought frequency analysis based on multiple variables. Adv. Water Sci. 30(3), 373-381 (in Chinese). https://doi.org/10.14042/j.cnki.32.1309.2019.03.007.
|
[49] |
Yu, M.X., Li, Q.F., Hayes, M.J., Svoboda, M.D., Heim, R.R., 2014. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951-2010. Int. J. Climatol. 34(3), 545-558. https://doi.org/10.1002/joc.3701.
|
[50] |
Yuan, W.P., Zhou, G.S., 2004. Comparison between standardized precipitation index and Z-index in China. Chin. J. Plant Ecol. 28(4), 523-529. https://doi.org/10.17521/cjpe.2004.0071.
|
[51] |
Zeng, H.N., Gu, H.H., Yu, Z.B., Tian, D., 2021. Study on the applicability of TRMM satellite precipitation data based on distributed hydrological models in the headwaters of Yellow River Basin. Yellow River 43(2), 17-21 (in Chinese).
|
[52] |
Zhang, B.K., 1934. The division of the four seasons in China. Acta Geogr. Sin. 1(1), 29-74.
|
[53] |
Zhang, L., He, Z.H., Yang, M.K., You, M., Pi, G.N., 2022a. Characteristics of meteorological droughtehydrological drought propagation process and its influencing factors: Taking Guizhou Qianzhong water conservancy project area as an example. J. Soil Water Conserv. 36(1), 142-152 (in Chinese). https://doi.org/10.13870/j.cnki.stbcxb.2022.01.020.
|
[54] |
Zhang, X., Xu, Y., Hao, F.H., Hao, Z.C., 2022b. Characteristics and risk analysis of drought propagation from meteorological drought to hydro-logical drought in Luanhe River Basin. J. Hydraul. Eng. 53(2), 165-175 (in Chinese). https://doi.org/10.13243/j.cnki.slxb.20210477.
|
[55] |
Zhou, L., Chi, Y.G., Li, Y., 2019. A multi-index evaluation of drought characteristics in China from 2001 to 2010. J. Zhejiang Normal Univ. (Nat. Sci.) 42(4), 448-455 (in Chinese). https://doi.org/10.16218/j.issn.1001-5051.2019.04.014.
|
[56] |
Zhu, N., 2020. Comprehensive Assessment of Drought in the Tarim River Basin Based on GLDAS and GRACE Data. East China Normal University, Shanghai.
|
[57] |
Zuo, D.P., Han, Y.N., Xu, Z.X., Li, P.J., Ban, C.G., Sun, W.C., Pang, B., Peng, D.Z., Kan, G.Y., Zhang, R., Yang, H., 2021. Time-lag effects of climatic change and drought on vegetation dynamics in an alpine river basin of the Tibet Plateau, China. J. Hydrol. 600, 126532. https://doi.org/10.1016/j.jhydrol.2021.126532.
|