Volume 18 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
Alaa El Din Mahmoud, Rominder Suri. 2025: Effective bromate removal from water utilizing ZIF-67 and ZIF-67/GO nanocomposites: Optimization and mechanism analysis. Water Science and Engineering, 18(3): 301-311. doi: 10.1016/j.wse.2025.06.001
Citation: Alaa El Din Mahmoud, Rominder Suri. 2025: Effective bromate removal from water utilizing ZIF-67 and ZIF-67/GO nanocomposites: Optimization and mechanism analysis. Water Science and Engineering, 18(3): 301-311. doi: 10.1016/j.wse.2025.06.001

Effective bromate removal from water utilizing ZIF-67 and ZIF-67/GO nanocomposites: Optimization and mechanism analysis

doi: 10.1016/j.wse.2025.06.001
  • Received Date: 2025-03-18
  • Accepted Date: 2025-06-10
  • Available Online: 2025-10-15
  • Bromate (BrO3-) is a toxic disinfection byproduct frequently formed during ozonation in water treatment processes and is classified as a potential human carcinogen. Its effective removal from drinking water is therefore a pressing concern for public health and environmental safety. This study investigated the removal of BrO3-from water using the synthesized zeolite imidazolate framework (ZIF)-67 and ZIF-67/graphene oxide (GO) nanocomposites through a comparative approach. The morphology, composition, and crystallinity of both ZIFs were characterized. The effects of four independent parameters (initial BrO3-concentration, pH, adsorbent dose, and contact time) on BrO-3 removal efficiency were examined. A strong correlation was observed between experimental and predicted values. GO enhanced BrO-3 removal not only through synergistic interactions with ZIF-67 but also by improving dispersion and providing additional functional groups that facilitate electrostatic interactions and adsorption. The Box—Behnken design was employed to evaluate both individual and interactive effects of the parameters on BrO3-removal, achieving an optimum removal efficiency of approximately 99.6% using 1.5 g/L of ZIF-67/GO at a pH value of 4 with an initial BrO3-concentration of 2 mg/L. The optimization process was further supported by desirability analysis. The BrO-3 removal mechanisms are primarily attributed to porosity, electrostatic interactions, and adsorption onto active sites. Compared to ZIF-67 alone, ZIF-67/GO demonstrated superior anion removal efficiency, highlighting its potential for water treatment applications.

     

  • loading
  • [1]
    Abbas, M.Q., Javeria, H., Shuhuan, C., Khan, J., Nazir, A., Ibrahim, S., Du, Z., 2025. High-performance novel ZIF-67 and ZIF-67@MWNTs composite adsorbents for efficient removal of pharmaceutical contaminant from water: Exceptional capacity and excellent reusability. Separ. Purif. Technol. 355, 129645. https://doi.org/10.1016/j.seppur.2024.129645.
    [2]
    Ahmed, N., Mir, F.Q., 2022. Box-Behnken design for optimization of iron removal by hybrid oxidation-microfiltration process using ceramic membrane. J. Mater. Sci. 57, 15224-15238. https://doi.org/10.1007/s10853-022-07567-0.
    [3]
    Al-Fakih, A., Ahmed Al-Koshab, M.Q., Al-Awsh, W., Drmosh, Q.A., Al-Osta, M.A., Al-Shugaa, M.A., Onaizi, S.A., 2022. Mechanical, hydration, and microstructural behavior of cement paste incorporating zeolitic imi-dazolate framework-67 (ZIF-67) nanoparticles. Constr. Build. Mater. 348, 128675. https://doi.org/10.1016/j.conbuildmat.2022.128675.
    [4]
    Al-Ghouti, M.A., Al-Absi, R.S., 2020. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci. Rep. 10, 15928. https://doi.org/10.1038/s41598-020-72996-3.
    [5]
    Butler, R.A.Y., Godley, A., Lytton, L., Cartmell, E., 2005. Bromate environmental contamination: Review of impact and possible treatment. Crit. Rev. Environ. Sci. Technol. 35(3), 193-217. https://doi.org/10.1080/10643380590917888.
    [6]
    Cao, W., Han, M., Qin, L., Jiang, Q., Xu, J., Lu, Z., Wang, Y., 2019. Synthesis of zeolitic imidazolate framework-67 nanocube wrapped by graphene oxide and its application for supercapacitors. J. Solid State Electrochem. 23, 325-334. https://doi.org/10.1007/s10008-018-4138-1.
    [7]
    Chen, G., He, S., Shi, G., Ma, Y., Ruan, C., Jin, X., Chen, Q., Liu, X., Dai, H., Chen, X., Huang, D., 2021. In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water. Chem. Eng. J. 423, 130184. https://doi.org/10.1016/j.cej.2021.130184.
    [8]
    Chen, R., Du, J., Luo, C., Liu, L., Liang, P., Zhang, K., Liu, Y., Zhu, G., 2025. A novel hierarchical porous ZIF-8 for effective removal of three non-steroidal anti-inflammatory drugs simultaneously from environment. Environ. Res. 271, 121078. https://doi.org/10.1016/j.envres.2025.121078.
    [9]
    Chen, S., Shang, S., Zhao, Q., Zhang, S., Yang, W., 2022. Removal of disinfection by-products precursor (humic acid) by graphene-silica composites. Water 14(7), 1178. https://doi.org/10.3390/w14071178.
    [10]
    Elsharkawy, K., Radwan, M., El-Aswar, E.I., 2025. Unveiling the role of rubber seals in the generation of decentralized disinfection by-products in chlorinated water distribution systems. Chemosphere 372, 144094. https://doi.org/10.1016/j.chemosphere.2025.144094.
    [11]
    Environmental Protection Agency (EPA), 1998. National Primary Drinking Water Regulations. EPA, Washington DC.
    [12]
    Ghafoor, M., Khan, Z.U., Nawaz, M.H., Akhtar, N., Rahim, A., Riaz, S., 2023. In-situ synthesized ZIF-67 graphene oxide (ZIF-67/GO) nanocomposite for efficient individual and simultaneous detection of heavy metal ions. Environ. Monit. Assess. 195, 423. https://doi.org/10.1007/s10661-023-10966-8.
    [13]
    Guo, H., Wang, Y., Li, C., Zhou, K., 2018. Construction of sandwichstructured CoAl-layered double hydroxide@zeolitic imidazolate framework-67 (CoAl-LDH@ZIF-67) hybrids: Towards enhancing the fire safety of epoxy resins. RSC Adv. 8, 36114-36122. https://doi.org/10.1039/C8RA06355A.
    [14]
    Hamidi, F., Dehghani, M.H., Kasraee, M., Salari, M., Shiri, L., Mahvi, A.H., 2022. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH): Optimization by response surface methodology & genetic-algorithm. Sci. Rep. 12, 4761. https://doi.org/10.1038/s41598-022-08769-x.
    [15]
    Han, Z., Yang, Y., Rushlow, J., Huo, J., Liu, Z., Hsu, Y.C., Yin, R., Wang, M., Liang, R., Wang, K.Y., 2025. Development of the design and synthesis of metal-organic frameworks (MOFs) - From large scale attempts, functional oriented modifications, to artificial intelligence (AI) predictions. Chem. Soc. Rev. 54(1), 367-395. https://doi.org/10.1039/D4CS00432A.
    [16]
    Hua, L., Wei, X., Wang, M., 2025. Residual level of chlorine disinfectant, the formation of disinfection by-products, and its impact on soil enzyme activity. Environ. Geochem. Health 47, 18. https://doi.org/10.1007/s10653-024-02337-0.
    [17]
    Huang, X., Huang, L., Arulmani, S.R.B., Yan, J., Li, Q., Tang, J., Wan, K., Zhang, H., Xiao, T., Shao, M., 2022. Research progress of metal organic frameworks and their derivatives for adsorption of anions in water: A review. Environ. Res. 204, 112381. https://doi.org/10.1016/j.envres.2021.112381.
    [18]
    Jahan, B.N., Li, L., Pagilla, K.R., 2021. Fate and reduction of bromate formed in advanced water treatment ozonation systems: A critical review. Chemosphere 266, 128964. https://doi.org/10.1016/j.chemosphere.2020.128964.
    [19]
    Kathi, S., Mahmoud, A.E.D., 2024. Trends in effective removal of emerging contaminants from wastewater: A comprehensive review. Desalination Water Treat. 317, 100258. https://doi.org/10.1016/j.dwt.2024.100258.
    [20]
    Kumar, A., Sharma, G., Naushad, M., Ahamad, T., Veses, R.C., Stadler, F.J., 2019. Highly visible active Ag2CrO4/Ag/BiFeO3@RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO. Chem. Eng. J. 370, 148-165. https://doi.org/10.1016/j.cej.2019.03.196.
    [21]
    Li, B.C., Yang, H., Kwon, E., Dinh Tuan, D., Cong Khiem, T., Lisak, G., Xuan Thanh, B., Ghanbari, F., Lin, K.Y.A., 2021. Catalytic reduction of bromate by Co-embedded N-doped carbon as a magnetic non-noble metal hydro-genation catalyst. Separ. Purif. Technol. 277, 119320. https://doi.org/10.1016/j.seppur.2021.119320.
    [22]
    Li, L., Wang, Y., Liu, L., Gao, C., Ru, S., Yang, L., 2024. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: A timely review. Environ. Sci. Pollut. Control Ser. 31(3), 3297-3319. https://doi.org/10.1007/s11356-023-31067-6.
    [23]
    Lin, K.Y.A., Chang, H.A., 2015. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 139, 624-631. https://doi.org/10.1016/j.chemosphere.2015.01.041.
    [24]
    Lin, T., Wu, S., Chen, W., 2014. Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation. Environ. Sci. Pollut. Control Ser. 21(24), 13987-14003. https://doi.org/10.1007/s11356-014-3329-2.
    [25]
    Lv, Z., Zhong, Q., Bu, Y., 2018. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property. Appl. Surf. Sci. 439, 413-419. https://doi.org/10.1016/j.apsusc.2017.12.185.
    [26]
    Mahmoodi, N.M., Taghizadeh, M., Taghizadeh, A., Abdi, J., Hayati, B., Shekarchi, A.A., 2019. Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media. Appl. Surf. Sci. 480, 288-299.
    [27]
    Mahmoud, A.E.D., Stolle, A., Stelter, M., 2018. Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain. Chem. Eng. 6(5), 6358-6369. https://doi.org/10.1021/acssuschemeng.8b00147.
    [28]
    Mahmoud, A.E.D., Franke, M., Stelter, M., Braeutigam, P., 2020. Mechano-chemical versus chemical routes for graphitic precursors and their per-formance in micropollutants removal in water. Powder Technol. 366, 629-640. https://doi.org/10.1016/j.powtec.2020.02.073.
    [29]
    Mahmoud, A.E.D., Umachandran, K., Sawicka, B., Mtewa, T.K., 2021. 26 - Water resources security and management for sustainable communities. In: Mtewa, A.G., Egbuna, C. (Eds.), Phytochemistry, the Military and Health. Elsevier, Amsterdam, pp. 509-522. https://doi.org/10.1016/B978-0-12-821556-2.00011-6.
    [30]
    Mahmoud, A.E.D., Fawzy, M., 2023. Decontamination of levofloxacin from water using a novel chitosan-walnut shells composite: Linear, nonlinear, and optimization modeling. Appl. Water Sci. 13, 244. https://doi.org/10.1007/s13201-023-02045-7.
    [31]
    Mahmoud, A.E.D., Ali, R., Fawzy, M., 2024. Insights into levofloxacin adsorption with machine learning models using nano-composite hydrochars. Chemosphere 355, 141746. https://doi.org/10.1016/j.apsusc.2019.02.211.
    [32]
    Massoudinejad, M., Ghaderpoori, M., Shahsavani, A., Amini, M.M., 2016. Adsorption of fluoride over a metal organic framework Uio-66 functionalized with amine groups and optimization with response surface meth-odology. J. Mol. Liq. 221, 279-286. https://doi.org/10.1016/j.molliq.2016.05.087.
    [33]
    Mirzaei, R., Yunesian, M., Nasseri, S., Gholami, M., Jalilzadeh, E., Shoeibi, S., Bidshahi, H.S., Mesdaghinia, A., 2017. An optimized SPELC-MS/MS method for antibiotics residue analysis in ground, surface and treated water samples by response surface methodology-central composite design. J. Environ. Health Sci. Eng. 15, 21. https://doi.org/10.1186/s40201-017-0282-2.
    [34]
    Mu, L., Cao, D., Zhuang, W., Yu, Q., Cai, M., Shi, Y., 2020. Stable dispersed zeolitic imidazolate framework/graphene oxide nanocomposites in ionic liquids resulting in high lubricating performance. Adv. Mater. Interfac. 7 (9), 1902194. https://doi.org/10.1002/admi.201902194.
    [35]
    Naiel, B., Fawzy, M., Halmy, M.W.A., Mahmoud, A.E.D., 2022. Green syn-thesis of zinc oxide nanoparticles using sea lavender (Limonium pruinosum L. Chaz.) extract: Characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci. Rep. 12, 20370. https://doi.org/10.1038/s41598-022-24805-2.
    [36]
    Naiel, B., Fawzy, M., Mahmoud, A.E.D., Halmy, M.W.A., 2024. Sustainable fabrication of dimorphic plant derived ZnO nanoparticles and exploration of their biomedical and environmental potentialities. Sci. Rep. 14, 13459. https://doi.org/10.1038/s41598-024-63459-0.
    [37]
    Nazir, M.A., Najam, T., Zarin, K., Shahzad, K., Javed, M.S., Jamshaid, M., Bashir, M.A., Shah, S.S.A., Rehman, A.U., 2021. Enhanced adsorption removal of methyl orange from water by porous bimetallic Ni/Co MOF composite: A systematic study of adsorption kinetics. Int. J. Environ. Anal. Chem. 103(16), 4841-4856. https://doi.org/10.1080/ 03067319.2021.1931855.
    [38]
    Phan, K.A., Lohwacharin, J., Oguma, K., Sharma, V.K., 2024. Bromate in drinking Water: Occurrence and removal by ultraviolet/sulfite advanced reduction processes. Chem. Eng. J. 490, 151759. https://doi.org/10.1016/j.cej.2024.151759.
    [39]
    Ranjan, D., Khan, M.A., Otero, M., Siddiqui, M.R., Alshaeef, S.A., 2021. Optimization of bromate adsorption onto Fe-CNTs nanocomposite using response surface methodology. Water SA 47(4), 423-429. https://doi.org/10.17159/wsa/2021.v47.i4.3873.
    [40]
    Rehman Shah, H.U., Ahmad, K., Naseem, H.A., Parveen, S., Ashfaq, M., Rauf, A., Aziz, T., 2021. Water stable graphene oxide metal-organic frameworks composite (ZIF-67@GO) for efficient removal of malachite green from water. Food Chem. Toxicol. 154, 112312. https://doi.org/10.1016/j.fct.2021.112312.
    [41]
    Rö ohl, C., Batke, M., Damm, G., Freyberger, A., Gebel, T., Gundert-Remy, U., Hengstler, J.G., Mangerich, A., Matthiessen, A., Partosch, F., Schupp, T., Wollin, K.M., Foth, H., 2022. New aspects in deriving health-based guidance values for bromate in swimming pool water. Arch. Toxicol. 96, 1623-1659. https://doi.org/10.1007/s00204-022-03255-9.
    [42]
    Shahsavari, M., Mortazavi, M., Tajik, S., Sheikhshoaie, I., Beitollahi, H., 2022. Synthesis and characterization of GO/ZIF-67 nanocomposite: Investigation of catalytic activity for the determination of epinine in the presence of dobutamine. Micromachines 13(1), 88. https://doi.org/10.3390/mi13010088.
    [43]
    Shaikh, T., Pise, S., Bhosale, R., Vadiyar, M., Nam, K.W., Kolekar, S., 2025. A review and perspective on advancement in metal-organic framework-based composites for supercapacitors: From dimensionalities to function-alities. Energy Fuel. 39(5), 2396-2421. https://doi.org/10.1021/acs.energyfuels.4c05687.
    [44]
    Song, F., Cao, S., Liu, Z., Su, H., Chen, Z., 2022. Different decorated ZIF-67 adsorption performance towards methamphetamine revealed by theoretical and experimental investigations. J. Mol. Liq. 364, 119950. https://doi.org/10.1016/j.molliq.2022.119950.
    [45]
    Sun, X.H., Wu, J., Yu, Y.C., Shen, Z.C., Ali, M.M., Du, Z.X., 2023. Synthesis of magnetic metal-organic framework for efficient adsorption of disin-fection by-products in water. Colloids Surf. A Physicochem. Eng. Asp. 660, 130797. https://doi.org/10.1016/j.colsurfa.2022.130797.
    [46]
    Sun, Y., Zhang, N., Yue, Y., Xiao, J., Huang, X., Ishag, A., 2022. Recent advances on the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: A review. Environ. Sci. Nano 11(9), 4069-4092. https://doi.org/10.1039/D2EN00601D.
    [47]
    Tang, J., Jiang, S., Liu, Y., Zheng, S., Bai, L., Guo, J., Wang, J., 2018. Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Microchim. Acta 185, 486. https://doi.org/10.1007/s00604-018-3025-x.
    [48]
    Wang, M., Ye, H., Zheng, X., Chen, S., Xing, H., Tao, X., Dang, Z., Lu, G., 2023. Adsorption behaviors and mechanisms of simultaneous cadmium and fluoride removal on waste bovine bone from aqueous solution. J. Environ. Chem. Eng. 11(1), 109035. https://doi.org/10.1016/j.jece.2022.109035.
    [49]
    Wen, G., Wang, S., Wang, T., Feng, Y., Chen, Z., Lin, W., Huang, T., Ma, J., 2020. Inhibition of bromate formation in the O3/PMS process by adding low dosage of carbon materials: Efficiency and mechanism. Chem. Eng. J. 402, 126207. https://doi.org/10.1016/j.cej.2020.126207.
    [50]
    Wu, Q.Y., Zhou, Y.T., Li, W., Zhang, X., Du, Y., Hu, H.Y., 2019. Under-estimated risk from ozonation of wastewater containing bromide: Both organic byproducts and bromate contributed to the toxicity increase. Water Res. 162, 43-52. https://doi.org/10.1016/j.watres.2019.06.054.
    [51]
    Wu, Z., Tang, Y., Yuan, X., Qiang, Z., 2021. Reduction of bromate by zero valent iron (ZVI) enhances formation of brominated disinfection by-products during chlorination. Chemosphere 268, 129340. https://doi.org/10.1016/j.chemosphere.2020.129340.
    [52]
    Xiao, J., Diao, K., Zheng, Z., Cui, X., 2018. MOF-derived porous ZnO/Co3O4 nanocomposites for high performance acetone gas sensing. J. Mater. Sci. Mater. Electron. 29, 8535-8546. https://doi.org/10.1007/s10854-018-8867-9.
    [53]
    Xiao, Q., Yu, S., Li, L., Wang, T., Liao, X., Ye, Y., 2017. An overview of advanced reduction processes for bromate removal from drinking water: Reducing agents, activation methods, applications and mechanisms. J. Hazard. Mater. 324, 230-240. https://doi.org/10.1016/j.jhazmat.2016.10.053.
    [54]
    Yang, Y., Zheng, Z., Ji, W., Yang, M., Ding, Q., Zhang, X., 2019. The study of bromate adsorption onto magnetic ion exchange resin: Optimization using response surface methodology. Surf. Interfaces 17, 100385. https://doi.org/10.1016/j.surfin.2019.100385.
    [55]
    Yang, Y., Li, X., Gu, Y., Lin, H., Jie, B., Zhang, Q., Zhang, X., 2022. Adsorption property of fluoride in water by metal organic framework: Optimization of the process by response surface methodology technique. Surf. Interfaces 28, 101649. https://doi.org/10.1016/j.surfin.2021.101649.
    [56]
    Younis, S.R., Abdelmotallieb, M., Ahmed, A.S., 2025. Facile synthesis of ZIF-8@GO composites for enhanced adsorption of cationic and anionic dyes from their aqueous solutions. RSC Adv. 15, 8594-8608. https://doi.org/10.1039/D4RA08890E.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return