Citation: | Alaa El Din Mahmoud, Rominder Suri. 2025: Effective bromate removal from water utilizing ZIF-67 and ZIF-67/GO nanocomposites: Optimization and mechanism analysis. Water Science and Engineering, 18(3): 301-311. doi: 10.1016/j.wse.2025.06.001 |
[1] |
Abbas, M.Q., Javeria, H., Shuhuan, C., Khan, J., Nazir, A., Ibrahim, S., Du, Z., 2025. High-performance novel ZIF-67 and ZIF-67@MWNTs composite adsorbents for efficient removal of pharmaceutical contaminant from water: Exceptional capacity and excellent reusability. Separ. Purif. Technol. 355, 129645. https://doi.org/10.1016/j.seppur.2024.129645.
|
[2] |
Ahmed, N., Mir, F.Q., 2022. Box-Behnken design for optimization of iron removal by hybrid oxidation-microfiltration process using ceramic membrane. J. Mater. Sci. 57, 15224-15238. https://doi.org/10.1007/s10853-022-07567-0.
|
[3] |
Al-Fakih, A., Ahmed Al-Koshab, M.Q., Al-Awsh, W., Drmosh, Q.A., Al-Osta, M.A., Al-Shugaa, M.A., Onaizi, S.A., 2022. Mechanical, hydration, and microstructural behavior of cement paste incorporating zeolitic imi-dazolate framework-67 (ZIF-67) nanoparticles. Constr. Build. Mater. 348, 128675. https://doi.org/10.1016/j.conbuildmat.2022.128675.
|
[4] |
Al-Ghouti, M.A., Al-Absi, R.S., 2020. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci. Rep. 10, 15928. https://doi.org/10.1038/s41598-020-72996-3.
|
[5] |
Butler, R.A.Y., Godley, A., Lytton, L., Cartmell, E., 2005. Bromate environmental contamination: Review of impact and possible treatment. Crit. Rev. Environ. Sci. Technol. 35(3), 193-217. https://doi.org/10.1080/10643380590917888.
|
[6] |
Cao, W., Han, M., Qin, L., Jiang, Q., Xu, J., Lu, Z., Wang, Y., 2019. Synthesis of zeolitic imidazolate framework-67 nanocube wrapped by graphene oxide and its application for supercapacitors. J. Solid State Electrochem. 23, 325-334. https://doi.org/10.1007/s10008-018-4138-1.
|
[7] |
Chen, G., He, S., Shi, G., Ma, Y., Ruan, C., Jin, X., Chen, Q., Liu, X., Dai, H., Chen, X., Huang, D., 2021. In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water. Chem. Eng. J. 423, 130184. https://doi.org/10.1016/j.cej.2021.130184.
|
[8] |
Chen, R., Du, J., Luo, C., Liu, L., Liang, P., Zhang, K., Liu, Y., Zhu, G., 2025. A novel hierarchical porous ZIF-8 for effective removal of three non-steroidal anti-inflammatory drugs simultaneously from environment. Environ. Res. 271, 121078. https://doi.org/10.1016/j.envres.2025.121078.
|
[9] |
Chen, S., Shang, S., Zhao, Q., Zhang, S., Yang, W., 2022. Removal of disinfection by-products precursor (humic acid) by graphene-silica composites. Water 14(7), 1178. https://doi.org/10.3390/w14071178.
|
[10] |
Elsharkawy, K., Radwan, M., El-Aswar, E.I., 2025. Unveiling the role of rubber seals in the generation of decentralized disinfection by-products in chlorinated water distribution systems. Chemosphere 372, 144094. https://doi.org/10.1016/j.chemosphere.2025.144094.
|
[11] |
Environmental Protection Agency (EPA), 1998. National Primary Drinking Water Regulations. EPA, Washington DC.
|
[12] |
Ghafoor, M., Khan, Z.U., Nawaz, M.H., Akhtar, N., Rahim, A., Riaz, S., 2023. In-situ synthesized ZIF-67 graphene oxide (ZIF-67/GO) nanocomposite for efficient individual and simultaneous detection of heavy metal ions. Environ. Monit. Assess. 195, 423. https://doi.org/10.1007/s10661-023-10966-8.
|
[13] |
Guo, H., Wang, Y., Li, C., Zhou, K., 2018. Construction of sandwichstructured CoAl-layered double hydroxide@zeolitic imidazolate framework-67 (CoAl-LDH@ZIF-67) hybrids: Towards enhancing the fire safety of epoxy resins. RSC Adv. 8, 36114-36122. https://doi.org/10.1039/C8RA06355A.
|
[14] |
Hamidi, F., Dehghani, M.H., Kasraee, M., Salari, M., Shiri, L., Mahvi, A.H., 2022. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH): Optimization by response surface methodology & genetic-algorithm. Sci. Rep. 12, 4761. https://doi.org/10.1038/s41598-022-08769-x.
|
[15] |
Han, Z., Yang, Y., Rushlow, J., Huo, J., Liu, Z., Hsu, Y.C., Yin, R., Wang, M., Liang, R., Wang, K.Y., 2025. Development of the design and synthesis of metal-organic frameworks (MOFs) - From large scale attempts, functional oriented modifications, to artificial intelligence (AI) predictions. Chem. Soc. Rev. 54(1), 367-395. https://doi.org/10.1039/D4CS00432A.
|
[16] |
Hua, L., Wei, X., Wang, M., 2025. Residual level of chlorine disinfectant, the formation of disinfection by-products, and its impact on soil enzyme activity. Environ. Geochem. Health 47, 18. https://doi.org/10.1007/s10653-024-02337-0.
|
[17] |
Huang, X., Huang, L., Arulmani, S.R.B., Yan, J., Li, Q., Tang, J., Wan, K., Zhang, H., Xiao, T., Shao, M., 2022. Research progress of metal organic frameworks and their derivatives for adsorption of anions in water: A review. Environ. Res. 204, 112381. https://doi.org/10.1016/j.envres.2021.112381.
|
[18] |
Jahan, B.N., Li, L., Pagilla, K.R., 2021. Fate and reduction of bromate formed in advanced water treatment ozonation systems: A critical review. Chemosphere 266, 128964. https://doi.org/10.1016/j.chemosphere.2020.128964.
|
[19] |
Kathi, S., Mahmoud, A.E.D., 2024. Trends in effective removal of emerging contaminants from wastewater: A comprehensive review. Desalination Water Treat. 317, 100258. https://doi.org/10.1016/j.dwt.2024.100258.
|
[20] |
Kumar, A., Sharma, G., Naushad, M., Ahamad, T., Veses, R.C., Stadler, F.J., 2019. Highly visible active Ag2CrO4/Ag/BiFeO3@RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO. Chem. Eng. J. 370, 148-165. https://doi.org/10.1016/j.cej.2019.03.196.
|
[21] |
Li, B.C., Yang, H., Kwon, E., Dinh Tuan, D., Cong Khiem, T., Lisak, G., Xuan Thanh, B., Ghanbari, F., Lin, K.Y.A., 2021. Catalytic reduction of bromate by Co-embedded N-doped carbon as a magnetic non-noble metal hydro-genation catalyst. Separ. Purif. Technol. 277, 119320. https://doi.org/10.1016/j.seppur.2021.119320.
|
[22] |
Li, L., Wang, Y., Liu, L., Gao, C., Ru, S., Yang, L., 2024. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: A timely review. Environ. Sci. Pollut. Control Ser. 31(3), 3297-3319. https://doi.org/10.1007/s11356-023-31067-6.
|
[23] |
Lin, K.Y.A., Chang, H.A., 2015. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 139, 624-631. https://doi.org/10.1016/j.chemosphere.2015.01.041.
|
[24] |
Lin, T., Wu, S., Chen, W., 2014. Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation. Environ. Sci. Pollut. Control Ser. 21(24), 13987-14003. https://doi.org/10.1007/s11356-014-3329-2.
|
[25] |
Lv, Z., Zhong, Q., Bu, Y., 2018. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property. Appl. Surf. Sci. 439, 413-419. https://doi.org/10.1016/j.apsusc.2017.12.185.
|
[26] |
Mahmoodi, N.M., Taghizadeh, M., Taghizadeh, A., Abdi, J., Hayati, B., Shekarchi, A.A., 2019. Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media. Appl. Surf. Sci. 480, 288-299.
|
[27] |
Mahmoud, A.E.D., Stolle, A., Stelter, M., 2018. Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain. Chem. Eng. 6(5), 6358-6369. https://doi.org/10.1021/acssuschemeng.8b00147.
|
[28] |
Mahmoud, A.E.D., Franke, M., Stelter, M., Braeutigam, P., 2020. Mechano-chemical versus chemical routes for graphitic precursors and their per-formance in micropollutants removal in water. Powder Technol. 366, 629-640. https://doi.org/10.1016/j.powtec.2020.02.073.
|
[29] |
Mahmoud, A.E.D., Umachandran, K., Sawicka, B., Mtewa, T.K., 2021. 26 - Water resources security and management for sustainable communities. In: Mtewa, A.G., Egbuna, C. (Eds.), Phytochemistry, the Military and Health. Elsevier, Amsterdam, pp. 509-522. https://doi.org/10.1016/B978-0-12-821556-2.00011-6.
|
[30] |
Mahmoud, A.E.D., Fawzy, M., 2023. Decontamination of levofloxacin from water using a novel chitosan-walnut shells composite: Linear, nonlinear, and optimization modeling. Appl. Water Sci. 13, 244. https://doi.org/10.1007/s13201-023-02045-7.
|
[31] |
Mahmoud, A.E.D., Ali, R., Fawzy, M., 2024. Insights into levofloxacin adsorption with machine learning models using nano-composite hydrochars. Chemosphere 355, 141746. https://doi.org/10.1016/j.apsusc.2019.02.211.
|
[32] |
Massoudinejad, M., Ghaderpoori, M., Shahsavani, A., Amini, M.M., 2016. Adsorption of fluoride over a metal organic framework Uio-66 functionalized with amine groups and optimization with response surface meth-odology. J. Mol. Liq. 221, 279-286. https://doi.org/10.1016/j.molliq.2016.05.087.
|
[33] |
Mirzaei, R., Yunesian, M., Nasseri, S., Gholami, M., Jalilzadeh, E., Shoeibi, S., Bidshahi, H.S., Mesdaghinia, A., 2017. An optimized SPELC-MS/MS method for antibiotics residue analysis in ground, surface and treated water samples by response surface methodology-central composite design. J. Environ. Health Sci. Eng. 15, 21. https://doi.org/10.1186/s40201-017-0282-2.
|
[34] |
Mu, L., Cao, D., Zhuang, W., Yu, Q., Cai, M., Shi, Y., 2020. Stable dispersed zeolitic imidazolate framework/graphene oxide nanocomposites in ionic liquids resulting in high lubricating performance. Adv. Mater. Interfac. 7 (9), 1902194. https://doi.org/10.1002/admi.201902194.
|
[35] |
Naiel, B., Fawzy, M., Halmy, M.W.A., Mahmoud, A.E.D., 2022. Green syn-thesis of zinc oxide nanoparticles using sea lavender (Limonium pruinosum L. Chaz.) extract: Characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci. Rep. 12, 20370. https://doi.org/10.1038/s41598-022-24805-2.
|
[36] |
Naiel, B., Fawzy, M., Mahmoud, A.E.D., Halmy, M.W.A., 2024. Sustainable fabrication of dimorphic plant derived ZnO nanoparticles and exploration of their biomedical and environmental potentialities. Sci. Rep. 14, 13459. https://doi.org/10.1038/s41598-024-63459-0.
|
[37] |
Nazir, M.A., Najam, T., Zarin, K., Shahzad, K., Javed, M.S., Jamshaid, M., Bashir, M.A., Shah, S.S.A., Rehman, A.U., 2021. Enhanced adsorption removal of methyl orange from water by porous bimetallic Ni/Co MOF composite: A systematic study of adsorption kinetics. Int. J. Environ. Anal. Chem. 103(16), 4841-4856. https://doi.org/10.1080/ 03067319.2021.1931855.
|
[38] |
Phan, K.A., Lohwacharin, J., Oguma, K., Sharma, V.K., 2024. Bromate in drinking Water: Occurrence and removal by ultraviolet/sulfite advanced reduction processes. Chem. Eng. J. 490, 151759. https://doi.org/10.1016/j.cej.2024.151759.
|
[39] |
Ranjan, D., Khan, M.A., Otero, M., Siddiqui, M.R., Alshaeef, S.A., 2021. Optimization of bromate adsorption onto Fe-CNTs nanocomposite using response surface methodology. Water SA 47(4), 423-429. https://doi.org/10.17159/wsa/2021.v47.i4.3873.
|
[40] |
Rehman Shah, H.U., Ahmad, K., Naseem, H.A., Parveen, S., Ashfaq, M., Rauf, A., Aziz, T., 2021. Water stable graphene oxide metal-organic frameworks composite (ZIF-67@GO) for efficient removal of malachite green from water. Food Chem. Toxicol. 154, 112312. https://doi.org/10.1016/j.fct.2021.112312.
|
[41] |
Rö ohl, C., Batke, M., Damm, G., Freyberger, A., Gebel, T., Gundert-Remy, U., Hengstler, J.G., Mangerich, A., Matthiessen, A., Partosch, F., Schupp, T., Wollin, K.M., Foth, H., 2022. New aspects in deriving health-based guidance values for bromate in swimming pool water. Arch. Toxicol. 96, 1623-1659. https://doi.org/10.1007/s00204-022-03255-9.
|
[42] |
Shahsavari, M., Mortazavi, M., Tajik, S., Sheikhshoaie, I., Beitollahi, H., 2022. Synthesis and characterization of GO/ZIF-67 nanocomposite: Investigation of catalytic activity for the determination of epinine in the presence of dobutamine. Micromachines 13(1), 88. https://doi.org/10.3390/mi13010088.
|
[43] |
Shaikh, T., Pise, S., Bhosale, R., Vadiyar, M., Nam, K.W., Kolekar, S., 2025. A review and perspective on advancement in metal-organic framework-based composites for supercapacitors: From dimensionalities to function-alities. Energy Fuel. 39(5), 2396-2421. https://doi.org/10.1021/acs.energyfuels.4c05687.
|
[44] |
Song, F., Cao, S., Liu, Z., Su, H., Chen, Z., 2022. Different decorated ZIF-67 adsorption performance towards methamphetamine revealed by theoretical and experimental investigations. J. Mol. Liq. 364, 119950. https://doi.org/10.1016/j.molliq.2022.119950.
|
[45] |
Sun, X.H., Wu, J., Yu, Y.C., Shen, Z.C., Ali, M.M., Du, Z.X., 2023. Synthesis of magnetic metal-organic framework for efficient adsorption of disin-fection by-products in water. Colloids Surf. A Physicochem. Eng. Asp. 660, 130797. https://doi.org/10.1016/j.colsurfa.2022.130797.
|
[46] |
Sun, Y., Zhang, N., Yue, Y., Xiao, J., Huang, X., Ishag, A., 2022. Recent advances on the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: A review. Environ. Sci. Nano 11(9), 4069-4092. https://doi.org/10.1039/D2EN00601D.
|
[47] |
Tang, J., Jiang, S., Liu, Y., Zheng, S., Bai, L., Guo, J., Wang, J., 2018. Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Microchim. Acta 185, 486. https://doi.org/10.1007/s00604-018-3025-x.
|
[48] |
Wang, M., Ye, H., Zheng, X., Chen, S., Xing, H., Tao, X., Dang, Z., Lu, G., 2023. Adsorption behaviors and mechanisms of simultaneous cadmium and fluoride removal on waste bovine bone from aqueous solution. J. Environ. Chem. Eng. 11(1), 109035. https://doi.org/10.1016/j.jece.2022.109035.
|
[49] |
Wen, G., Wang, S., Wang, T., Feng, Y., Chen, Z., Lin, W., Huang, T., Ma, J., 2020. Inhibition of bromate formation in the O3/PMS process by adding low dosage of carbon materials: Efficiency and mechanism. Chem. Eng. J. 402, 126207. https://doi.org/10.1016/j.cej.2020.126207.
|
[50] |
Wu, Q.Y., Zhou, Y.T., Li, W., Zhang, X., Du, Y., Hu, H.Y., 2019. Under-estimated risk from ozonation of wastewater containing bromide: Both organic byproducts and bromate contributed to the toxicity increase. Water Res. 162, 43-52. https://doi.org/10.1016/j.watres.2019.06.054.
|
[51] |
Wu, Z., Tang, Y., Yuan, X., Qiang, Z., 2021. Reduction of bromate by zero valent iron (ZVI) enhances formation of brominated disinfection by-products during chlorination. Chemosphere 268, 129340. https://doi.org/10.1016/j.chemosphere.2020.129340.
|
[52] |
Xiao, J., Diao, K., Zheng, Z., Cui, X., 2018. MOF-derived porous ZnO/Co3O4 nanocomposites for high performance acetone gas sensing. J. Mater. Sci. Mater. Electron. 29, 8535-8546. https://doi.org/10.1007/s10854-018-8867-9.
|
[53] |
Xiao, Q., Yu, S., Li, L., Wang, T., Liao, X., Ye, Y., 2017. An overview of advanced reduction processes for bromate removal from drinking water: Reducing agents, activation methods, applications and mechanisms. J. Hazard. Mater. 324, 230-240. https://doi.org/10.1016/j.jhazmat.2016.10.053.
|
[54] |
Yang, Y., Zheng, Z., Ji, W., Yang, M., Ding, Q., Zhang, X., 2019. The study of bromate adsorption onto magnetic ion exchange resin: Optimization using response surface methodology. Surf. Interfaces 17, 100385. https://doi.org/10.1016/j.surfin.2019.100385.
|
[55] |
Yang, Y., Li, X., Gu, Y., Lin, H., Jie, B., Zhang, Q., Zhang, X., 2022. Adsorption property of fluoride in water by metal organic framework: Optimization of the process by response surface methodology technique. Surf. Interfaces 28, 101649. https://doi.org/10.1016/j.surfin.2021.101649.
|
[56] |
Younis, S.R., Abdelmotallieb, M., Ahmed, A.S., 2025. Facile synthesis of ZIF-8@GO composites for enhanced adsorption of cationic and anionic dyes from their aqueous solutions. RSC Adv. 15, 8594-8608. https://doi.org/10.1039/D4RA08890E.
|