Volume 18 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
Jian Fan, Jia-long Li, Bing-qian Deng, Jie-xin Wang, Wen-bin An, Yu-mei Li, Peng Sun. 2025: Comparative experimental study of bisphenol A degradation via sulfate radical and electron transfer mechanisms in persulfate-activated advanced oxidation processes. Water Science and Engineering, 18(3): 288-300. doi: 10.1016/j.wse.2025.07.003
Citation: Jian Fan, Jia-long Li, Bing-qian Deng, Jie-xin Wang, Wen-bin An, Yu-mei Li, Peng Sun. 2025: Comparative experimental study of bisphenol A degradation via sulfate radical and electron transfer mechanisms in persulfate-activated advanced oxidation processes. Water Science and Engineering, 18(3): 288-300. doi: 10.1016/j.wse.2025.07.003

Comparative experimental study of bisphenol A degradation via sulfate radical and electron transfer mechanisms in persulfate-activated advanced oxidation processes

doi: 10.1016/j.wse.2025.07.003
Funds:

This work was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2024LHMS05048).

  • Received Date: 2024-12-11
  • Accepted Date: 2025-04-27
  • Available Online: 2025-10-15
  • Addressing the growing challenge of water contamination, this study comparatively evaluated a persulfate (PDS) system activated by non-radical nitrogen-doped carbon nanotubes (N-CNTs) versus a PDS system activated by radical-based iron (Fe2+), both used for the degradation of bisphenol A (BPA). The N-CNTs/PDS system, driven by the electron transfer mechanism, achieved remarkable 90.9% BPA removal within 30 min at high BPA concentrations, significantly outperforming the Fe2+/PDS system, which attained only 38.9% removal. The N-CNTs/PDS system maintained robust degradation efficiency across a wide range of BPA concentrations and exhibited a high degree of resilience in diverse water matrices. By directly abstracting electrons from BPA molecules, the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution, ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate. The formation of the N-CNTs-PDS* complex significantly enhanced BPA degradation and mineralisation, thereby optimising PDS consumption. These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater, offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.

     

  • loading
  • [1]
    Abdelraheem, W.H.M., Patil, M.K., Nadagouda, M.N., Dionysiou, D.D., 2018. Hydrothermal synthesis of photoactive nitrogen- and boron-codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: Synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Appl. Catal. B Environ. Energy 241, 598-611. https://doi.org/10.1016/j.apcatb.2018.09.039.
    [2]
    Anipsitakis, G.P., Dionysiou, D.D., Gonzalez, M.A., 2006. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ. Sci. Technol. 40(3), 1000-1007. https://doi.org/10.1021/es050634b.
    [3]
    Bethi, B., Sonawane, S.H., Bhanvase, B.A., Gumfekar, S.P., 2016. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process. Process Intensif. 109, 178-189. https://doi.org/10.1016/j.cep.2016.08.016.
    [4]
    Cao, Y., Yu, H., Tan, J., Peng, F., Wang, H., Li, J., Zheng, W., Wong, N.B., 2013. Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon 57, 433-442. https://doi.org/10.1016/j.carbon.2013.02.016.
    [5]
    Chen, H., Xu, Y., Zhu, K., Zhang, H., 2020. Understanding oxygen-deficient La2CuO4-δ perovskite activated peroxymonosulfate for bisphenol A degra-dation: The role of localized electron within oxygen vacancy. Appl. Catal. B Environ. 284, 119732. https://doi.org/10.1016/j.apcatb.2020.119732.
    [6]
    Chen, X., Oh, W.D., Lim, T.T., 2018. Graphene- and CNTs-based carboca-talysts in persulfates activation: Material design and catalytic mechanisms. Chem. Eng. J. 354, 941-976. https://doi.org/10.1016/j.cej.2018.08.049.
    [7]
    Chen, Y., Vu, H.C., Miller, C.J., Garg, S., Pan, D., Waite, T.D., 2022. Comparative experimental and computational studies of hydroxyl and sulfate radical-mediated degradation of simple and complex organic sub-strates. Environ. Sci. Technol. 56(12), 8819-8832. https://doi.org/10.1021/acs.est.2c00686.
    [8]
    Chokshi, N.P., Chauhan, A., Chhayani, R., Sharma, S., Ruparelia, J.P., 2024. Preparation and application of Ag-Ce-O composite metal oxide catalyst in catalytic ozonation for elimination of Reactive Black 5 dye from aqueous media. Water Sci. Eng. 17(3), 257-265. https://doi.org/10.1016/j.wse.2023.08.005.
    [9]
    Dan, J., Wang, Q., Rao, P., Dong, L., Zhang, M., Zhang, X., He, Z., Gao, N., Deng, J., 2021. Bimetallic oxides with package structure for enhanced degradation of bisphenol A through peroxymonosulfate activation. Chem. Eng. J. 429, 132189. https://doi.org/10.1016/j.cej.2021.132189.
    [10]
    Ding, Y., Wang, X., Fu, L., Peng, X., Pan, C., Mao, Q., Wang, C., Yan, J., 2020. Nonradicals induced degradation of organic pollutants by perox-ydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective. Sci. Total Environ. 765, 142794. https://doi.org/10.1016/j.scitotenv.2020.142794.
    [11]
    Du, J., Bao, J., Liu, Y., Ling, H., Zheng, H., Kim, S.H., Dionysiou, D.D., 2016. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A. J. Hazard. Mater. 320, 150-159. https://doi.org/10.1016/j.jhazmat.2016.08.021.
    [12]
    Duan, X., Sun, H., Wang, Y., Kang, J., Wang, S., 2014. N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catal. 5(2), 553-559. https://doi.org/10.1021/cs5017613.
    [13]
    Duan, X., Sun, H., Wang, S., 2018. Metal-free carbocatalysis in advanced oxidation reactions. Acc. Chem. Res. 51(3), 678-687. https://doi.org/10.1021/acs.accounts.7b00535.
    [14]
    Glaze, W.H., Kang, J.W., Chapin, D.H., 1987. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 9(4), 335-352. https://doi.org/10.1080/01919518708552148.
    [15]
    Govindan, K., Kim, D.G., Ko, S.O., 2022. Catalytic oxidation of acetaminophen through pristine and surface-modified nitrogen-doped carbon-nanotube-catalyzed peroxydisulfate activation. J. Environ. Chem. Eng. 10, 108257. https://doi.org/10.1016/j.jece.2022.108257.
    [16]
    Hou, X., Zhan, G., Huang, X., Wang, N., Ai, Z., Zhang, L., 2019. Persulfate activation induced by ascorbic acid for efficient organic pollutants oxidation. Chem. Eng. J. 382, 122355. https://doi.org/10.1016/j.cej.2019.122355.
    [17]
    Hu, L., Wang, P., Shen, T., Wang, Q., Wang, X., Xu, P., Zheng, Q., Zhang, G., 2020. The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: A review. Sci. Total Environ. 722, 137831. https://doi.org/10.1016/j.scitotenv.2020.137831.
    [18]
    Jang, J.W., Lee, C.E., Lyu, S.C., Lee, T.J., Lee, C.J., 2004. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett. 84(15), 2877-2879. https://doi.org/10.1063/1.1697624.
    [19]
    Liu, W., Li, Y., Liu, F., Jiang, W., Zhang, D., Liang, J., 2018. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation. Water Res. 151, 8-19. https://doi.org/10.1016/j.watres.2018.12.001.
    [20]
    Luo, S., Gao, L., Wei, Z., Spinney, R., Dionysiou, D.D., Hu, W.P., Chai, L., Xiao, R., 2018. Kinetic and mechanistic aspects of hydroxyl radicalmediated degradation of naproxen and reaction intermediates. Water Res. 137, 233-241. https://doi.org/10.1016/j.watres.2018.03.002.
    [21]
    Luo, Z., Xu, Y., Tang, D., Lu, L., Li, Y., Zhang, M., Sun, J., 2023. Electron-transfer based selective oxidation of organic pollutants via N-doped biochar activated peroxydisulfate: Important role of oxidation potential. Sep. Purif. Technol. 326, 124769. https://doi.org/10.1016/j.seppur.2023.124769.
    [22]
    Oh, W.D., Dong, Z., Lim, T.T., 2016. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. Energy 194, 169-201. https://doi.org/10.1016/j.apcatb.2016.04.003.
    [23]
    Oyekunle, D.T., Zhou, X., Shahzad, A., Chen, Z., 2021. Review on carbona-ceous materials as persulfate activators: Structure-performance relationship, mechanism and future perspectives on water treatment. J. Mater. Chem. A 9, 8012-8050. https://doi.org/10.1039/d1ta00033k.
    [24]
    Ren, W., Xiong, L., Nie, G., Zhang, H., Duan, X., Wang, S., 2019a. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups. Environ. Sci. Technol. 54(2), 1267-1275. https://doi.org/10.1021/acs.est.9b06208.
    [25]
    Ren, W., Xiong, L., Yuan, X., Yu, Z., Zhang, H., Duan, X., Wang, S., 2019b. Activation of peroxydisulfate on carbon nanotubes: Electron-transfer mechanism. Environ. Sci. Technol. 53(24), 14595-14603. https://doi.org/10.1021/acs.est.9b05475.
    [26]
    Shah, N.S., He, X., Khan, H.M., Khan, J.A., O’Shea, K.E., Boccelli, D.L., Dionysiou, D.D., 2013. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study. J. Hazard. Mater. 263, 584-592. https://doi.org/10.1016/j.jhazmat.2013.10.019.
    [27]
    Tan, W., Ren, W., Wang, C., Fan, Y., Deng, B., Lin, H., Zhang, H., 2020. Perox-ymonosulfate activated with waste battery-based Mn-Fe oxides for pollutant removal: Electron transfer mechanism, selective oxidation and LFER analysis. Chem. Eng. J. 394, 124864. https://doi.org/10.1016/j.cej.2020.124864.
    [28]
    Wang, H., Guo, W., Liu, B., Wu, Q., Luo, H., Zhao, Q., Si, Q., Sseguya, F., Ren, N., 2019. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism. Water Res. 160, 405-414. https://doi.org/10.1016/j.watres.2019.05.059.
    [29]
    Wang, H., Guo, W., Si, Q., Liu, B., Zhao, Q., Luo, H., Ren, N., 2021a. Multipath elimination of bisphenol A over bifunctional polymeric carbon nitride/biochar hybrids in the presence of persulfate and visible light. J. Hazard. Mater. 417, 126008. https://doi.org/10.1016/j.jhazmat.2021. 126008.
    [30]
    Wang, M., Cui, Y., Cao, H., Wei, P., Chen, C., Li, X., Xu, J., Sheng, G., 2020. Activating peroxydisulfate with Co3O4/NiCo2O4 double-shelled nanocages to selectively degrade bisphenol A - A nonradical oxidation process. Appl. Catal. B Environ. 282, 119585. https://doi.org/10.1016/j.apcatb.2020.119585.
    [31]
    Wang, Q., Zhou, D., Lin, K., Chen, X., 2021b. Carbon nitride-based cuprous catalysts induced nonradical-led oxidation by peroxydisulfate: Role of cuprous and dissolved oxygen. Chem. Eng. J. 419, 129667. https://doi.org/10.1016/j.cej.2021.129667.
    [32]
    Wang, W.L., Wu, Q.Y., Huang, N., Wang, T., Hu, H.Y., 2016. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of car-bamazepine: Influence factors and radical species. Water Res. 98, 190-198. https://doi.org/10.1016/j.watres.2016.04.015.
    [33]
    Wu, S., Liu, H., Yang, C., Li, X., Lin, Y., Yin, K., Sun, J., Teng, Q., Du, C., Zhong, Y., 2019. High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation. Chem. Eng. J. 392, 123683. https://doi.org/10.1016/j.cej.2019.123683.
    [34]
    Xiong, Z., Zhang, H., Zhang, W., Lai, B., Yao, G., 2018. Removal of nitro-phenols and their derivatives by chemical redox: A review. Chem. Eng. J. 359, 13-31. https://doi.org/10.1016/j.cej.2018.11.111.
    [35]
    Xu, L., Wu, C., Liu, P., Bai, X., Du, X., Jin, P., Yang, L., Jin, X., Shi, X., Wang, Y., 2020. Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants. Chem. Eng. J. 387, 124065. https://doi.org/10.1016/j.cej.2020.124065.
    [36]
    Zheng, W., Xiao, X., Chen, B., 2019. A nonradical reaction-dominated phenol degradation with peroxydisulfate catalyzed by nitrogen-doped graphene. Sci. Total Environ. 667, 287-296. https://doi.org/10.1016/j.scitotenv.2019.02.173.
    [37]
    Zhu, S., Huang, X., Ma, F., Wang, L., Duan, X., Wang, S., 2018. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms. Environ. Sci. Technol. 52 (15), 8649-8658. https://doi.org/10.1021/acs.est.8b01817.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return