Volume 12 Issue 1
Mar.  2019
Turn off MathJax
Article Contents
Juan Pinos, Luis Timbe. 2019: Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Science and Engineering, 12(1): 11-18. doi: 10.1016/j.wse.2019.03.001
Citation: Juan Pinos, Luis Timbe. 2019: Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Science and Engineering, 12(1): 11-18. doi: 10.1016/j.wse.2019.03.001

Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins

doi: 10.1016/j.wse.2019.03.001
More Information
  • Corresponding author: Juan Pinos
  • Received Date: 2018-06-13
  • Rev Recd Date: 2019-01-03
  • Hydraulic models for the generation of ?ood inundation maps are not commonly applied in mountain river basins because of the dif?culty in modeling the hydraulic behavior and the complex topography. This paper presents a comparative analysis of the performance of four twodimensional hydraulic models (HEC-RAS 2D, Iber 2D, Flood Modeller 2D, and PCSWMM 2D) with respect to the generation of ?ood inundation maps. The study area covers a 5-km reach of the Santa Barbara River located in the Ecuadorian Andes, at 2330 masl, in Gualaceo. The model's performance was evaluated based on the water surface elevation and ?ood extent, in terms of the mean absolute difference and measure of ?t. The analysis revealed that, for a given case, Iber 2D has the best performance in simulating the water level and inundation for ?ood events with 20- and 50-year return periods, respectively, followed by Flood Modeller 2D, HEC-RAS 2D, and PCSWMM 2D in terms of their performance. Grid resolution, the way in which hydraulic structures are mimicked, the model code, and the default value of the parameters are considered the main sources of prediction uncertainty.


  • loading
  • Archambeau, P., Dewals, B.J., Erpicum, S., Mouzelard, T., Pirotton, M., 2002. Wolf software: A fully integrated device applied to modelling gradual dam failures and assessing subsequent risks. In: Rahman, M., Verhoeven, R., Brebbia, C.A., eds., Advances in Fluid Mechanics IV. WIT Press, Southampton pp. 259-268.
    Bates, P.D., De Roo, A.P.J., 2000. A simple raster-based model for flood inundation simulation. Journal of Hydrology 236(1-2), 54-77. https://doi.org/10.1016/S0022-1694(00)00278-X.
    Beck, J., 2016. Comparison of three methodologies for quasi-2D river flood modeling with SWMM5. Journal of Water Management Modeling https://doi.org/10.14796/JWMM.C402.
    Bladé, E., Cea, L., Corestein, G., 2014a. Numerical modelling of river inundations. Ingeniería del Agua 18(1), 71-82. https://doi.org/10.4995/ia.2014.3144.
    Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A., 2014b. Iber: River modelling simulation tool. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004.
    Brunner, G.W., 2016. HEC-RAS River Analysis System, Hydraulic Reference Manual (Version 5). US Army Corps of Engineers, Davis.
    Casas, A., Benito, G., Thorndycraft, V.R., Rico, M., 2006. The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms 31(4), 444-456. https://doi.org/10.1002/esp.1278.
    Cook, A., Merwade, V., 2009. Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. Journal of Hydrology 377(1-2), 131-142. https://doi.org/10.1016/j.jhydrol.2009.08.015.
    Evans, W., Kirkpatrick, D., Townsend, G., 2001. Right-triangulated irregular networks. Algorithmica 30(2), 264-286. https://doi.org/10.1007/s00453-001-0006-x.
    Hartnett, M., Nash, S., 2017, High-resolution flood modeling of urban areas using MSN_Flood. Water Science and Engineering 10(3), 175-183. https://doi.org/10.1016/j.wse.2017.10.003.
    Hervouet, J.M., 2000. TELEMAC modelling system: An overview. Hydrological Processes 14, 2209-2210. https://doi.org/10.1002/1099-1085(200009)14:13<2209::AID-HYP23>3.0.CO;2-6.
    Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., Kanae, S., 2013. Global flood risk under climate change. Nature Climate Change 3(9), 816. https://doi.org/10.1038/nclimate1911.
    Horritt, M.S., Bates, P.D., 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology 268(1-4), 87-99. https://doi.org/10.1016/S0022-1694(02)00121-X.
    Hunter, N.M., Bates, P.D., Neelz, S., Pender, G., Villanueva, I., Wright, N.G., Liang, D., Falconer, R.A., Lin, B., Waller, S., et al., 2008. Benchmarking 2D hydraulic models for urban flood simulations. Proceedings of the Institution of Civil Engineers: Water Management 161(1), 13-30. http://dx.doi.org/10.1680/wama.2008.161.1.13.
    Instituto Nacional de Meteorología e Hidrología (INAMHI), 2015. Meteorological Yearbook No. 52-2012. INAMHI, Quito (in Spanish).
    Jacobs, 2018. Flood Modeller: Online Manual. http://help.floodmodeller.com/floodmodeller/[Retrieved July 2018].
    Jamieson, S.R., Lhomme, J., Wright, G., Gouldby, B., 2012. A highly efficient 2D flood model with sub-element topography. Proceedings of the Institution of Civil Engineers: Water Management 165(10), 581-595. https://doi.org/10.1680/wama.12.00021.
    Li, J., Wong, D.W.S., 2010. Effects of DEM sources on hydrologic applications. Computers, Environment and Urban Systems 34(3), 251-261. https://doi.org/10.1016/j.compenvurbsys.2009.11.002.
    Merwade, V., Olivera, F., Arabi, M., Edleman, S., 2008. Uncertainty in flood inundation mapping: Current issues and future directions. Journal of Hydrologic Engineering 13(7), 608-620. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(608).
    Papaioannou, G., Loukas, A., Vasiliades, L., Aronica, G.T., 2016. Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. Natural Hazards 83(1), 117-132. https://doi.org/10.1007/s11069-016-2382-1.
    Rossman, L.A., 2006. Storm Water Management Model Quality Assurance Report: Dynamic Wave Flow Routing. United States Environmental Protection Agency, Cincinnati.
    Secretaría Nacional del Agua (SENAGUA), 2014. Vulnerability Assessment to Flood Events of the Santa Bárbara River, Volume 2: Hydraulic Study. SENAGUA, Quito, p. 108 (in Spanish).
    ShahiriParsa, A., Noori, M., Heydari, M., Rashidi, M., 2016. Floodplain zoning simulation by using HEC-RAS and CCHE2D models in the Sungai Maka River. Air, Soil and Water Research (9), 55-62. https://doi.org/10.4137/ASWR.S36089.
    Syme, W.J., 2001. TUFLOW: Two & one-dimensional unsteady flow software for rivers, estuaries and coastal waters. In: Proceedings of IEAust Water Panel Seminar and Workshop on 2D Flood Modelling, Sydney.
    Tayefi, V., Lane, S.N., Hardy, R.J., Yu, D., 2007. A comparison of one- and two-dimensional approaches to modelling flood inundation over complex upland floodplains. Hydrological Processes 21(23), 3190-3202. https://doi.org/10.1002/hyp.6523.
    Wang, Y., Zheng, T., 2005. Comparison of light detection and ranging and national elevation dataset digital elevation model on floodplains of North Carolina. Natural Hazards Review 6(1), 34-40. https://doi.org/10.1061/(ASCE)1527-6988(2005)6:1(34).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (402) PDF downloads(405) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint