Articles in press are presented at https://www.sciencedirect.com/journal/water-science-and-engineering/articles-in-press
2023, 16(3): 219-225.
doi: 10.1016/j.wse.2023.04.004
Abstract:
Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a twodimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.
Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a twodimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.
2023, 16(3): 226-233.
doi: 10.1016/j.wse.2023.05.001
Abstract:
Estimating the design flood under nonstationary conditions is challenging. In this study, a sample reconstruction approach was developed to transform a nonstationary series into a stationary one in a future time window (FTW). In this approach, the first-order moment (EFTW) of an extreme flood series in the FTW was used, and two possible methods of estimating EFTW values in terms of point values and confidence intervals were developed. Three schemes were proposed to analyze the uncertainty of design flood estimation in terms of sample representativeness, uncertainty from EFTW estimation, and both factors, respectively. To investigate the performance of the sample reconstruction approach, synthesis experiments were designed based on the annual peak series of the Little Sugar Creek in the United States. The results showed that the sample reconstruction approach performed well when the high-order moment of the series did not change significantly in the specified FTW. Otherwise, its performance deteriorated. In addition, the uncertainty of design flood estimation caused by sample representativeness was greater than that caused by EFTW estimation.
Estimating the design flood under nonstationary conditions is challenging. In this study, a sample reconstruction approach was developed to transform a nonstationary series into a stationary one in a future time window (FTW). In this approach, the first-order moment (EFTW) of an extreme flood series in the FTW was used, and two possible methods of estimating EFTW values in terms of point values and confidence intervals were developed. Three schemes were proposed to analyze the uncertainty of design flood estimation in terms of sample representativeness, uncertainty from EFTW estimation, and both factors, respectively. To investigate the performance of the sample reconstruction approach, synthesis experiments were designed based on the annual peak series of the Little Sugar Creek in the United States. The results showed that the sample reconstruction approach performed well when the high-order moment of the series did not change significantly in the specified FTW. Otherwise, its performance deteriorated. In addition, the uncertainty of design flood estimation caused by sample representativeness was greater than that caused by EFTW estimation.
2023, 16(3): 234-242.
doi: 10.1016/j.wse.2023.01.003
Abstract:
Malaysia's rapid economic and demographic development have placed negative pressure on its water supplies and the quality of the Juru River, which is close to the nation's capital and its major source of water. Healthy aquatic ecosystems are supported by physicochemical properties and biological diversity. This study evaluated the anthropogenic impacts on aquatic biodiversity, especially plankton, fish, and macrobenthos, as well as the water quality of the Juru River in the Penang area. Aquatic biodiversity and river water parameters were collected from ten sampling stations along the Juru River. Seven variables were used to assess the physicochemical environment: pH, temperature, total suspended solids (TSS), salinity, dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand. At each sampling station, the total number of plankton, fish, and macrobenthic taxa were counted and analyzed. The relationships between the physicochemical parameters and aquatic biodiversity were investigated with biotypological analysis, principal component analysis, hierarchical cluster analysis, and linear regression analysis. These analyses showed that the richness and diversity indices were generally influenced by salinity, temperature, TSS, BOD, and pH. The data obtained in this study supported the bioindicator concept. The findings, as they related to scientifically informed conservation, could serve as a model for Juru River management, as well as for river management throughout Malaysia and other tropical Asian countries.
Malaysia's rapid economic and demographic development have placed negative pressure on its water supplies and the quality of the Juru River, which is close to the nation's capital and its major source of water. Healthy aquatic ecosystems are supported by physicochemical properties and biological diversity. This study evaluated the anthropogenic impacts on aquatic biodiversity, especially plankton, fish, and macrobenthos, as well as the water quality of the Juru River in the Penang area. Aquatic biodiversity and river water parameters were collected from ten sampling stations along the Juru River. Seven variables were used to assess the physicochemical environment: pH, temperature, total suspended solids (TSS), salinity, dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand. At each sampling station, the total number of plankton, fish, and macrobenthic taxa were counted and analyzed. The relationships between the physicochemical parameters and aquatic biodiversity were investigated with biotypological analysis, principal component analysis, hierarchical cluster analysis, and linear regression analysis. These analyses showed that the richness and diversity indices were generally influenced by salinity, temperature, TSS, BOD, and pH. The data obtained in this study supported the bioindicator concept. The findings, as they related to scientifically informed conservation, could serve as a model for Juru River management, as well as for river management throughout Malaysia and other tropical Asian countries.
2023, 16(3): 243-251.
doi: 10.1016/j.wse.2023.01.004
Abstract:
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visiblelight responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultravioletevisible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO3)2 concentration, temperature, and heating duration were 0.10 mol/L, 600 C, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visiblelight responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultravioletevisible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO3)2 concentration, temperature, and heating duration were 0.10 mol/L, 600 C, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.
2023, 16(3): 252-260.
doi: 10.1016/j.wse.2023.06.002
Abstract:
Nutrient release from sediment is considered a significant source for overlying water. Given that nutrient release mechanisms in sediment are complex and difficult to simulate, traditional approaches commonly use assigned parameter values to simulate these processes. In this study, a nitrogen flux model was developed and coupled with the water quality model of an urban lake. After parameter sensitivity analyses and model calibration and validation, this model was used to simulate nitrogen exchange at the sedimentewater interface in eight scenarios. The results showed that sediment acted as a buffer in the sedimentewater system. It could store or release nitrogen at any time, regulate the distribution of nitrogen between sediment and the water column, and provide algae with nitrogen. The most effective way to reduce nitrogen levels in urban lakes within a short time is to reduce external nitrogen loadings. However, sediment release might continue to contribute to the water column until a new balance is achieved. Therefore, effective measures for reducing sediment nitrogen should be developed as supplementary measures. Furthermore, model parameter sensitivity should be individually examined for different research subjects.
Nutrient release from sediment is considered a significant source for overlying water. Given that nutrient release mechanisms in sediment are complex and difficult to simulate, traditional approaches commonly use assigned parameter values to simulate these processes. In this study, a nitrogen flux model was developed and coupled with the water quality model of an urban lake. After parameter sensitivity analyses and model calibration and validation, this model was used to simulate nitrogen exchange at the sedimentewater interface in eight scenarios. The results showed that sediment acted as a buffer in the sedimentewater system. It could store or release nitrogen at any time, regulate the distribution of nitrogen between sediment and the water column, and provide algae with nitrogen. The most effective way to reduce nitrogen levels in urban lakes within a short time is to reduce external nitrogen loadings. However, sediment release might continue to contribute to the water column until a new balance is achieved. Therefore, effective measures for reducing sediment nitrogen should be developed as supplementary measures. Furthermore, model parameter sensitivity should be individually examined for different research subjects.
2019, 12(4): 274-283.
doi: 10.1016/j.wse.2019.12.004
摘要:
Increased urbanisation, economic growth, and long-term climate variability have made both the UK and China more susceptible to urban and river flooding, putting people and property at increased risk. This paper presents a review of the current flooding challenges that are affecting the UK and China and the actions that each country is undertaking to tackle these problems. Particular emphases in this paper are laid on (1) learning from previous flooding events in the UK and China, and (2) which management methodologies are commonly used to reduce flood risk. The paper concludes with a strategic research plan suggested by the authors, together with proposed ways to overcome identified knowledge gaps in flood management. Recommendations briefly comprise the engagement of all stakeholders to ensure a proactive approach to land use planning, early warning systems, and water-sensitive urban design or redesign through more effective policy, multi-level flood models, and data driven models of water quantity and quality.
Increased urbanisation, economic growth, and long-term climate variability have made both the UK and China more susceptible to urban and river flooding, putting people and property at increased risk. This paper presents a review of the current flooding challenges that are affecting the UK and China and the actions that each country is undertaking to tackle these problems. Particular emphases in this paper are laid on (1) learning from previous flooding events in the UK and China, and (2) which management methodologies are commonly used to reduce flood risk. The paper concludes with a strategic research plan suggested by the authors, together with proposed ways to overcome identified knowledge gaps in flood management. Recommendations briefly comprise the engagement of all stakeholders to ensure a proactive approach to land use planning, early warning systems, and water-sensitive urban design or redesign through more effective policy, multi-level flood models, and data driven models of water quantity and quality.
2016, 9(1): 58-66.
doi: 10.1016/j.wse.2016.02.002
摘要:
This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the Cross-Calibrated Multi-Platform (CCMP) reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.
This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the Cross-Calibrated Multi-Platform (CCMP) reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.
2020, 13(3): 202-213.
doi: 10.1016/j.wse.2020.09.007
摘要:
In this experiment, cobalt ferrite-supported activated carbon (CF-AC) was developed and characterized via the wet impregnation method for the removal of Cr and Pb(II) ions from tannery wastewater. Batch adsorption was carried out to evaluate the effect of experimental operating conditions (pH of solution, contact time, adsorbent dose, and temperature), and the removal efficiencies of Cr and Pb(II) ions by the developed adsorbents were calculated and recorded for all experimental conditions. These variables were estimated and reported as removal efficiencies of 98.2% for Cr and 96.4% for Pb(II) ions at the optimal conditions of 5, 0.8 g, 80 min, and 333 K for pH, adsorbent dose, contact time, and temperature, respectively. The equilibrium for the sorption of Cr and Pb(II) ions was studied using four widely used isotherm models (the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models). It was found that the Freundlich isotherm model fit better with the coefficient of determination (R2) of 0.948 4 and a small sum of square error of 0.000 6. The maximum adsorption capacities (Qm) of Pb(II) and Cr adsorbed onto CF-AC were determined to be 6.27 and 23.6 mg/g, respectively. The adsorption process conformed well to pseudo-second order kinetics as revealed by the high R2 values obtained for both metals. The thermodynamic parameters showed that adsorption of Cr and Pb(II) ions onto CF-AC was spontaneous, feasible, and endothermic under the studied conditions. The mean adsorption energy (E) values revealed that the adsorption mechanism of Cr and Pb(II) by CF-AC is physical in nature. The results of the study showed that adsorbent developed from CF-AC can be efficiently used as an environmentally friendly alternative adsorbent, for removal of Cr and Pb(II) ions in tannery wastewater.
In this experiment, cobalt ferrite-supported activated carbon (CF-AC) was developed and characterized via the wet impregnation method for the removal of Cr and Pb(II) ions from tannery wastewater. Batch adsorption was carried out to evaluate the effect of experimental operating conditions (pH of solution, contact time, adsorbent dose, and temperature), and the removal efficiencies of Cr and Pb(II) ions by the developed adsorbents were calculated and recorded for all experimental conditions. These variables were estimated and reported as removal efficiencies of 98.2% for Cr and 96.4% for Pb(II) ions at the optimal conditions of 5, 0.8 g, 80 min, and 333 K for pH, adsorbent dose, contact time, and temperature, respectively. The equilibrium for the sorption of Cr and Pb(II) ions was studied using four widely used isotherm models (the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models). It was found that the Freundlich isotherm model fit better with the coefficient of determination (R2) of 0.948 4 and a small sum of square error of 0.000 6. The maximum adsorption capacities (Qm) of Pb(II) and Cr adsorbed onto CF-AC were determined to be 6.27 and 23.6 mg/g, respectively. The adsorption process conformed well to pseudo-second order kinetics as revealed by the high R2 values obtained for both metals. The thermodynamic parameters showed that adsorption of Cr and Pb(II) ions onto CF-AC was spontaneous, feasible, and endothermic under the studied conditions. The mean adsorption energy (E) values revealed that the adsorption mechanism of Cr and Pb(II) by CF-AC is physical in nature. The results of the study showed that adsorbent developed from CF-AC can be efficiently used as an environmentally friendly alternative adsorbent, for removal of Cr and Pb(II) ions in tannery wastewater.
2016, 9(2): 87-96.
doi: 10.1016/j.wse.2016.06.002
摘要:
The main objective of this study was to evaluate four latest global high-resolution satellite precipitation products (TMPA 3B42RT, CMORPH, TMPA 3B42V7, and CMORPH_adj) against gauge observations of the Yellow River Basin from March 2000 to December 2012. The assessment was conducted with several commonly used statistical indices at daily and monthly scales. Results indicate that 3B42V7 and CMORPH_adj perform better than the near real-time products (3B42RT and CMORPH), particularly the 3B42V7 product. The adjustment by gauge data significantly reduces the systematic biases in the research products. Regarding the near real-time datasets, 3B42RT overestimates rainfall over the whole basin, while CMORPH presents a mixed pattern with negative and positive values of relative bias in low- and high-latitude regions, respectively, and CMORPH performs better than 3B42RT on the whole. According to the spatial distribution of statistical indices, these values are optimized in the southeast and decrease toward the northwest, and the trend is similar for the spatial distribution of the mean annual precipitation during the period from 2000 to 2012. This study also reveals that all the four products can effectively detect rainfall events. This study provides useful information about four mainstream satellite products in the Yellow River Basin, and the findings can facilitate the use of global precipitation measurement (GPM) data in the future.
The main objective of this study was to evaluate four latest global high-resolution satellite precipitation products (TMPA 3B42RT, CMORPH, TMPA 3B42V7, and CMORPH_adj) against gauge observations of the Yellow River Basin from March 2000 to December 2012. The assessment was conducted with several commonly used statistical indices at daily and monthly scales. Results indicate that 3B42V7 and CMORPH_adj perform better than the near real-time products (3B42RT and CMORPH), particularly the 3B42V7 product. The adjustment by gauge data significantly reduces the systematic biases in the research products. Regarding the near real-time datasets, 3B42RT overestimates rainfall over the whole basin, while CMORPH presents a mixed pattern with negative and positive values of relative bias in low- and high-latitude regions, respectively, and CMORPH performs better than 3B42RT on the whole. According to the spatial distribution of statistical indices, these values are optimized in the southeast and decrease toward the northwest, and the trend is similar for the spatial distribution of the mean annual precipitation during the period from 2000 to 2012. This study also reveals that all the four products can effectively detect rainfall events. This study provides useful information about four mainstream satellite products in the Yellow River Basin, and the findings can facilitate the use of global precipitation measurement (GPM) data in the future.
2019, 12(1): 11-18.
doi: 10.1016/j.wse.2019.03.001
摘要:
Hydraulic models for the generation of ?ood inundation maps are not commonly applied in mountain river basins because of the dif?culty in modeling the hydraulic behavior and the complex topography. This paper presents a comparative analysis of the performance of four twodimensional hydraulic models (HEC-RAS 2D, Iber 2D, Flood Modeller 2D, and PCSWMM 2D) with respect to the generation of ?ood inundation maps. The study area covers a 5-km reach of the Santa Barbara River located in the Ecuadorian Andes, at 2330 masl, in Gualaceo. The model's performance was evaluated based on the water surface elevation and ?ood extent, in terms of the mean absolute difference and measure of ?t. The analysis revealed that, for a given case, Iber 2D has the best performance in simulating the water level and inundation for ?ood events with 20- and 50-year return periods, respectively, followed by Flood Modeller 2D, HEC-RAS 2D, and PCSWMM 2D in terms of their performance. Grid resolution, the way in which hydraulic structures are mimicked, the model code, and the default value of the parameters are considered the main sources of prediction uncertainty.
Hydraulic models for the generation of ?ood inundation maps are not commonly applied in mountain river basins because of the dif?culty in modeling the hydraulic behavior and the complex topography. This paper presents a comparative analysis of the performance of four twodimensional hydraulic models (HEC-RAS 2D, Iber 2D, Flood Modeller 2D, and PCSWMM 2D) with respect to the generation of ?ood inundation maps. The study area covers a 5-km reach of the Santa Barbara River located in the Ecuadorian Andes, at 2330 masl, in Gualaceo. The model's performance was evaluated based on the water surface elevation and ?ood extent, in terms of the mean absolute difference and measure of ?t. The analysis revealed that, for a given case, Iber 2D has the best performance in simulating the water level and inundation for ?ood events with 20- and 50-year return periods, respectively, followed by Flood Modeller 2D, HEC-RAS 2D, and PCSWMM 2D in terms of their performance. Grid resolution, the way in which hydraulic structures are mimicked, the model code, and the default value of the parameters are considered the main sources of prediction uncertainty.
2016, 9(1): 33-41.
doi: 10.1016/j.wse.2016.02.003
摘要:
The southern coast of the Gulf of Maine in the United States is prone to flooding caused by nor’easters. A state-of-the-art fully-coupled model, the Simulating WAves Nearshore (SWAN) model with unstructured grids and the ADvanced CIRCulation (ADCIRC) model, was used to study the hydrodynamic response in the Gulf of Maine during the Patriot’s Day storm of 2007, a notable example of nor’easters in this area. The model predictions agree well with the observed tide-surges and waves during this storm event. Waves and circulation in the Gulf of Maine were analyzed. The Georges Bank plays an important role in dissipating wave energy through the bottom friction when waves propagate over the bank from offshore to the inner gulf due to its shallow bathymetry. Wave energy dissipation results in decreasing significant wave height (SWH) in the cross-bank direction and wave radiation stress gradient, which in turn induces changes in currents. While the tidal currents are dominant over the Georges Bank and in the Bay of Fundy, the residual currents generated by the meteorological forcing and waves are significant over the Georges Bank and in the coastal area and can reach 0.3 m/s and 0.2 m/s, respectively. In the vicinity of the coast, the longshore current generated by the surface wind stress and wave radiation stress acting parallel to the coastline is inversely proportional to the water depth and will eventually be limited by the bottom friction. The storm surge level reaches 0.8 m along the western periphery of the Gulf of Maine while the wave set-up due to radiation stress variation reaches 0.2 m. Therefore, it is significant to coastal flooding.
The southern coast of the Gulf of Maine in the United States is prone to flooding caused by nor’easters. A state-of-the-art fully-coupled model, the Simulating WAves Nearshore (SWAN) model with unstructured grids and the ADvanced CIRCulation (ADCIRC) model, was used to study the hydrodynamic response in the Gulf of Maine during the Patriot’s Day storm of 2007, a notable example of nor’easters in this area. The model predictions agree well with the observed tide-surges and waves during this storm event. Waves and circulation in the Gulf of Maine were analyzed. The Georges Bank plays an important role in dissipating wave energy through the bottom friction when waves propagate over the bank from offshore to the inner gulf due to its shallow bathymetry. Wave energy dissipation results in decreasing significant wave height (SWH) in the cross-bank direction and wave radiation stress gradient, which in turn induces changes in currents. While the tidal currents are dominant over the Georges Bank and in the Bay of Fundy, the residual currents generated by the meteorological forcing and waves are significant over the Georges Bank and in the coastal area and can reach 0.3 m/s and 0.2 m/s, respectively. In the vicinity of the coast, the longshore current generated by the surface wind stress and wave radiation stress acting parallel to the coastline is inversely proportional to the water depth and will eventually be limited by the bottom friction. The storm surge level reaches 0.8 m along the western periphery of the Gulf of Maine while the wave set-up due to radiation stress variation reaches 0.2 m. Therefore, it is significant to coastal flooding.
2019, 12(1): 27-36.
doi: 10.1016/j.wse.2019.04.003
摘要:
This study aimed to investigate the biosorption potential of Na2CO3-modified Aloe barbadensis Miller (Aloe vera) leaf (MABL) powder for removal of Ni(II) ions from a synthetic aqueous solution. Effects of various process parameters (pH, equilibrium time, and temperature) were investigated in order to optimize the biosorptive removal. The maximum biosorption capacity of MABL was observed to be 28.986 mg/g at a temperature of 303 K, a biosorbent dose of 0.6 g, a contact time of 90 min, and a pH value of 7. Different kinetic models (the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models) were evaluated. The pseudo-second-order kinetic model was found to be the best fitted model in this study, with a coefficient of determination of R2 = 0.974. Five different isotherm models (the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Brunauer-Emmett-Teller (BET) models) were investigated to identify the best-suited isotherm model for the present system. Based on the minimum chi-square value (χ2 = 0.027) and the maximum coefficient of determination (R2 = 0.996), the Langmuir isotherm model was found to represent the system well, indicating the possibility of monolayer biosorption. The sticking probability (S*) was found to be 0.41, suggesting a physisorption mechanism for biosorption of Ni(II) on MABL. The biosorbent was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, and BET surface area, in order to understand its morphological and functional characteristics.
This study aimed to investigate the biosorption potential of Na2CO3-modified Aloe barbadensis Miller (Aloe vera) leaf (MABL) powder for removal of Ni(II) ions from a synthetic aqueous solution. Effects of various process parameters (pH, equilibrium time, and temperature) were investigated in order to optimize the biosorptive removal. The maximum biosorption capacity of MABL was observed to be 28.986 mg/g at a temperature of 303 K, a biosorbent dose of 0.6 g, a contact time of 90 min, and a pH value of 7. Different kinetic models (the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models) were evaluated. The pseudo-second-order kinetic model was found to be the best fitted model in this study, with a coefficient of determination of R2 = 0.974. Five different isotherm models (the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Brunauer-Emmett-Teller (BET) models) were investigated to identify the best-suited isotherm model for the present system. Based on the minimum chi-square value (χ2 = 0.027) and the maximum coefficient of determination (R2 = 0.996), the Langmuir isotherm model was found to represent the system well, indicating the possibility of monolayer biosorption. The sticking probability (S*) was found to be 0.41, suggesting a physisorption mechanism for biosorption of Ni(II) on MABL. The biosorbent was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, and BET surface area, in order to understand its morphological and functional characteristics.
2019, 12(2): 85-97.
doi: 10.1016/j.wse.2019.06.001
摘要:
The objective of this study was to retrieve daily composite soil moisture by jointly using brightness temperature observations from multiple operating satellites for near real-time application with better coverage and higher accuracy. Our approach was to first apply the single-channel brightness radiometric algorithm to estimate soil moisture from the respective brightness temperature observations of the SMAP, SMOS, AMSR2, FY3B, and FY3C satellites on the same day and then produce a daily composite dataset by averaging the individual satellite-retrieved soil moisture. We further evaluated our product, the official soil moisture products of the five satellites, and the ensemble mean (i.e., arithmetic mean) of the five official satellite soil moisture products against ground observations from two networks in Central Tibet and Anhui Province, China. The results show that our product outperforms the individual released products of the five satellites and their ensemble means in the two validation areas. The root mean square error (RMSE) values of our product were 0.06 and 0.09 m3/m3 in Central Tibet and Anhui Province, respectively. Relative to the ensemble mean of the five satellite products, our product improves the accuracy by 9.1% and 57.7% in Central Tibet and Anhui Province, respectively. This demonstrates that jointly using brightness temperature observations from multiple satellites to retrieve soil moisture not only improves the spatial coverage of daily observations but also produces better daily composite products.
The objective of this study was to retrieve daily composite soil moisture by jointly using brightness temperature observations from multiple operating satellites for near real-time application with better coverage and higher accuracy. Our approach was to first apply the single-channel brightness radiometric algorithm to estimate soil moisture from the respective brightness temperature observations of the SMAP, SMOS, AMSR2, FY3B, and FY3C satellites on the same day and then produce a daily composite dataset by averaging the individual satellite-retrieved soil moisture. We further evaluated our product, the official soil moisture products of the five satellites, and the ensemble mean (i.e., arithmetic mean) of the five official satellite soil moisture products against ground observations from two networks in Central Tibet and Anhui Province, China. The results show that our product outperforms the individual released products of the five satellites and their ensemble means in the two validation areas. The root mean square error (RMSE) values of our product were 0.06 and 0.09 m3/m3 in Central Tibet and Anhui Province, respectively. Relative to the ensemble mean of the five satellite products, our product improves the accuracy by 9.1% and 57.7% in Central Tibet and Anhui Province, respectively. This demonstrates that jointly using brightness temperature observations from multiple satellites to retrieve soil moisture not only improves the spatial coverage of daily observations but also produces better daily composite products.
2019, 12(1): 45-54.
doi: 10.1016/j.wse.2018.11.001
摘要:
Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling
water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the
adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more
suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being
trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO)
and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood
River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and
gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved
solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using
SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with
ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters.
Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling
water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the
adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more
suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being
trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO)
and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood
River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and
gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved
solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using
SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with
ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters.
2020, 13(1): 65-73.
doi: 10.1016/j.wse.2019.12.011
摘要:
This study investigated the removal of hexavalent chromium (Cr(VI)) in aqueous solutions using pomelo peel (PP) and FeCl3-modified pomelo peel (FPP) as novel biomass adsorbents. Batch adsorption experiments were performed to evaluate the effects of pH, time, temperature, initial concentration, and adsorbent dose on Cr(VI) removal by PP and FPP. The results show that the maximum adsorption capacity of Cr(VI) was 21.55 mg/g for FPP and 0.57 mg/g for PP at a pH of 2.0 and a temperature of 40 ℃. The surface shape, microstructure, and chemical composition of FPP were analyzed with scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive spectroscopy (EDS), and compared with those of PP. The results show that the adsorption performance of FPP was much better than that of PP, indicating that FPP can be an alternative high-efficiency adsorbent for Cr(VI) removal.
This study investigated the removal of hexavalent chromium (Cr(VI)) in aqueous solutions using pomelo peel (PP) and FeCl3-modified pomelo peel (FPP) as novel biomass adsorbents. Batch adsorption experiments were performed to evaluate the effects of pH, time, temperature, initial concentration, and adsorbent dose on Cr(VI) removal by PP and FPP. The results show that the maximum adsorption capacity of Cr(VI) was 21.55 mg/g for FPP and 0.57 mg/g for PP at a pH of 2.0 and a temperature of 40 ℃. The surface shape, microstructure, and chemical composition of FPP were analyzed with scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive spectroscopy (EDS), and compared with those of PP. The results show that the adsorption performance of FPP was much better than that of PP, indicating that FPP can be an alternative high-efficiency adsorbent for Cr(VI) removal.
2008, 1(1): 37-43 .
doi: 10.3882/j.issn.1674-2370.2008.01.005
Abstract:
2011, 4(1): 101-109.
doi: 10.3882/j.issn.1674-2370.2011.01.010
Abstract:
2011, 4(3): 258-269.
doi: 10.3882/j.issn.1674-2370.2011.03.003
Abstract:
2012, 5(3): 243-258.
doi: 10.3882/j.issn.1674-2370.2012.03.001
Abstract:
2010, 3(3): 321-330.
doi: 10.3882/j.issn.1674-2370.2010.03.008
Abstract:
2012, 5(1): 26-33.
doi: 10.3882/j.issn.1674-2370.2012.01.003
Abstract:
- Top Download
- Top Click
1
2008, 1(1): 37-43 .
doi: 10.3882/j.issn.1674-2370.2008.01.005
2
2011, 4(1): 101-109.
doi: 10.3882/j.issn.1674-2370.2011.01.010
3
2011, 4(3): 258-269.
doi: 10.3882/j.issn.1674-2370.2011.03.003
4
2012, 5(3): 243-258.
doi: 10.3882/j.issn.1674-2370.2012.03.001
5
2010, 3(3): 321-330.
doi: 10.3882/j.issn.1674-2370.2010.03.008
6
2012, 5(1): 26-33.
doi: 10.3882/j.issn.1674-2370.2012.01.003
1
2010, 3(2): 132-143.
doi: 10.3882/j.issn.1674-2370.2010.02.002
2
2010, 3(3): 241-256.
doi: 10.3882/j.issn.1674-2370.2010.03.001
3
2010, 3(4): 418-430.
doi: 10.3882/j.issn.1674-2370.2010.04.005
4
2010, 3(1): 1-13.
doi: 10.3882/j.issn.1674-2370.2010.01.001
5
2012, 5(1): 105-119.
doi: 10.3882/j.issn.1674-2370.2012.01.010
6
2011, 4(1): 24-35.
doi: 10.3882/j.issn.1674-2370.2011.01.003
Volume 16,Issue 3,
Sep. 2023
Editor-in-ChiefChao Wang
Edited byEditorial Board of Water Science and Engineering
Distributed byEditorial Office of Water Science and Engineering
News
- WSE Special Issue on Security and Sustainability for Hydraulic Structures November 01,2021
- WSE Special Issue on Water Security and Sustainability April 14,2021
- WSE Special Issue for CORE2021 March 09,2021
