Citation: | Wei He, Si-yuan Feng, Jian Zhang, Hong-wu Tang, Yang Xiao, Sheng Chen, Chun-sheng Liu. 2024: Hydrodynamic characteristics and particle tracking of 90° lateral intakes at an inclined river slope. Water Science and Engineering, 17(2): 197-208. doi: 10.1016/j.wse.2023.11.004 |
Asnaashari, A., Merufinia, E., Aminnejad, B., Khoshtinat, S., 2016. Numerical investigation of the effect of the turbulence in the predicting flow velocity distribution, turbulence kinetic energy and hydrostatic pressure on the lateral intakes. Journal of Vibroengineering 18(4), 2429-2436. https://doi.org/10.21595/jve.2015.15924.
|
Barkdoll, B.D., Ettema, R., Odgaard, A.J., 1999. Sediment control at lateral diversions:Limits and enhancements to vane use. J. Hydraul. Eng. 125(8), 862-870. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:8(862).
|
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Environmental Modelling and Software 33, 1-22. https://doi.org/10.1016/j.envsoft.2012.02.001.
|
Cao, J., Chen, H., He, Y., 2003. Experimental study on hydraulic characteristics of lateral intake in open channel. Journal of Hydraulic Engineering 2003(10), 32-37(in Chinese). https://doi.org/10.3321/j.issn:0559-9350.2003.10.006.
|
Dehghani, A.A., Ghodsian, M., Suzuki, K., Alaghmand, S., Zhang, C., Tang, H., 2009. Local scour around lateral intakes in 180 degree curved channel. In:Proceedings of the 16th IAHR-APD Congress and the 3rd Symposium of IAHR-ISHS. IAHR, Beijing, pp. 821-825. https://doi.org/10.1007/978-3-540-89465-0_144.
|
He, W., Lian, J., Yao, Y., Wu, M., Ma, C., 2017. Modeling the effect of temperature-control curtain on the thermal structure in a deep stratified reservoir. J. Environ. Manage. 202(1), 106-116. https://doi.org/10.1016/j.jenvman.2017.07.006.
|
He, W., Lian, J., Du, H., Ma, C., 2018. Source tracking and temperature prediction of discharged water in a deep reservoir based on a 3-D hydro-thermal-tracer model. Journal of Hydro-environment Research 20, 9-21. https://doi.org/10.1016/j.jher.2018.04.002.
|
Herrero, A., Bateman, A., Medina, V., 2015. Water flow and sediment transport in a 90° channel diversion:An experimental study. J. Hydraul. Res. 53(2), 253-263. https://doi.org/10.1080/00221686.2014.989457.
|
Jakeman, A.J., Letcher, R.A., Norton, J.P., 2006. Ten iterative steps in development and evaluation of environmental models. Environmental Modelling and Software 21(5), 602-614. https://doi.org/10.1016/j.envsoft.2006.01.004.
|
Karami, H., Farzin, S., Sadrabadi, M.T., Moazeni, H., 2017. Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios. Water Science and Engineering 10(3), 246-255. https://doi.org/10.1016/j.wse.2017.10.001.
|
Keshavarzi, A., Habibi, L., 2005. Optimizing water intake angle by flow separation analysis. Irrig. Drain. 54(5), 543-552. https://doi.org/10.1002/ird.207.
|
Lane, S.N., Hardy, R.J., Ferguson, R.I., Parsons, D.R., 2005. A framework for model verification and validation of CFD schemes in natural open channel flows. In:Bates, P.D., Lane, S.N., Ferguson, R.I.(Eds), Computational Fluid Dynamics. Wiley, Chichester, pp. 169-192. https://doi.org/10.1002/0470015195.ch8.
|
Lou, Y., 2006. Study on Water Environmental Capacity of Tidal River Network-Take Rongjiang as the Example. Hohai University, Nanjing.
|
Lucas, J., Lutz, N., Lais, A., Hager, W.H., Boes, R.M., 2015. Side-channel flow:Physical model studies. J. Hydraul. Eng. 141(9), 05015003. https://doi.org/10.1061/(ASCE) HY.1943-7900.0001029.
|
Meselhe, E.A., Georgiou, I., Allison, M.A., McCorquodale, J.A., 2012. Numerical modeling of hydrodynamics and sediment transport in lower Mississippi at a proposed delta building diversion. J. Hydrol. 472-473, 340-354. https://doi.org/10.1016/j.jhydrol.2012.09.043.
|
Momplot, A., Lipeme Kouyi, G., Mignot, E., Riviere, N., Bertrand-Krajewski, J., 2017. Typology of the flow structures in dividing open channel flows. J. Hydraul. Res. 55(1), 63-71. https://doi.org/10.1080/00221686.2016.1212409.
|
Montaseri, H., Asiaei, H., Baghlani, A., Omidvar, P., 2019. Numerical study of flow pattern around lateral intake in a curved channel. Int. J. Mod. Phys. C 30(11), 1950083. https://doi.org/10.1142/S0129183119500839.
|
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transaction of the ASABE 50(3), 885-900. https://doi.org/10.13031/2013.23153.
|
Neary, V.S., Sotiropoulos, F., Odgaard, A.J., 1999. Three-dimensional numerical model of lateral-intake inflows. J. Hydraul. Eng. 125(2), 126-140. http://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(126).
|
Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corp., Washington DC.
|
Rosier, B., Boillat, J., Schleiss, A.J., 2011. Influence of lateral water withdrawal on bed form geometry in a channel. J. Hydraul. Eng. 137(12), 1668-1675. https://doi.org/10.1061/(ASCE) HY.1943-7900.0000472.
|
Sarhadi, A., Jabbari, E., 2017. Investigating effect of different parameters of the submerged vanes on the lateral intake discharge located in the 180 degree bend using the numerical model. Civil Engineering Journal 3(11), 1176-1187. https://doi.org/10.28991/cej-030947.
|
Seyedian, S.M., Bajestan, M.S., Farasati, M., 2014. Effect of bank slope on the flow patterns in river intakes. J. Hydrodyn. 26(3), 482-492. https://doi.org/10.1016/S1001-6058(14)60055-X.
|
Tavakoli, K., Montaseri, H., Omidvar, P., Evangelista, S., 2019. Numerical simulation of sediment transport in a U-shaped channel with lateral intake:Effects of intake position and diversion angle. Int. J. Mod. Phys. C 30(9), 1950071. https://doi.org/10.1142/S0129183119500712.
|
Zhao, L., Ma, T., Yu, J., Li, C., Hu, S., Li, Q., 2014. Siltation features and into canal characteristics at water intake of lateral for Yellow River irrigation área. Journal of Drainage and Irrigation Machinery Engineering 32(8), 685-690(in Chinese).
|