Current Issue

2024, Volume 17,  Issue 4

Editorial Material
Abstract:
Flood control operation, a non-engineering measure, can efficiently manage flood disasters within a river basin. However, numerous uncertainties exit in the real-time operation of flood control systems, creating risks in decision-making. As an efficient tool to mitigate these risks, risk management has garnered increasing attention in real-time flood control operation. This communication offers a series of suggestions for future research concerning risk management in real-time flood control operation, including risk assessment, risk diagnosis, and risk control methods.
Water Resources
Abstract:
The Ba Lang sand beaches, located north of the Nha Trang Bay in Central Vietnam, are famous tourist attractions. However, they are experiencing shoreline and coastal erosion retreat, which is attributed to natural causes (such as tropical depressions, storms, and monsoons) as well as human impacts (such as hydropower generation, sand dredging, and coastal works). According to the forecast of the Vietnam Ministry of Natural Resources and Environment, global climate change will cause the sea level to rise by 74 cm along the coast from the Dai Lanh Cape to the Ke Ga Cape (including the Ba Lang beaches) by the end of this century in the representative concentration pathway (RCP) 8.5 scenario. Sea level rise (SLR) due to global climate change is expected to aggravate the coastal erosion and shoreline retreat problems. In this study, coupled numerical models with the spectral wave module (MIKE 21 SW), hydrodynamic module (MIKE 21 HD), and sand transport module (MIKE 21 ST) in the MIKE 21 package were used to simulate waves, current fields, and sediment dynamics along the Ba Lang beaches considering the impact of SLR. These models were calibrated with the field data measured in December 2016. The results showed that SLR caused the wave height to increase and reduced the current speed and total sediment load in monsoon conditions. The increase in wave height was even intensified under the joint impact of SLR and extreme events.
Abstract:
The Pussur River, an important river in Bangladesh, requires approximately 6 × 106 m3 of sediment to be dredged per year. At present, this dredged material is mainly dumped on the nearby agricultural and fish-cultivation lands, causing a reduction in productive land and producing negative impacts on people's livelihoods. This study aimed to investigate the engineering and environmental properties of the dredged sand of the Pussur River and evaluate the viability of its potential uses in different sectors. Bed sediments from the Pussur River and dredged material from disposal sites were collected, and laboratory investigations were performed. The test results showed that the dredged material of the Pussur River mainly consisted of fine sand with a fineness modulus ranging from 0.58 to 0.72 and could be classified as poorly graded sand according to the Unified Soil Classification System. This sand was also found suitable for land development, with a fair to poor suitability rating. Given the low concentration of heavy metals (at uncontaminated/slightly contaminated levels), the dredged sand might be safely used for land reclamation, landfill cover, and horticultural purposes, or else for other geotechnical applications without further treatment. After washing/leaching, the dredged sand could also be used as a partial replacement for local sand in concrete works. Moreover, there is a possibility of exporting the dredged sand to Singapore and the Maldives as filling material. These findings will help policymakers design dredging projects with a proper spoil management plan accounting for the dredged material's beneficial use.
Abstract:
Oyster aquaculture in Oualidia Lagoon, Morocco, has suffered from poor water quality and water confinement in its upstream region. Tidal asymmetry (TA) has been suggested as a possible cause, and a sediment trap was dredged in 2011 to mitigate this condition. This study addresses TA in the lagoon using field measurements and numerical modeling in the presence of the sediment trap. Results indicate that the lagoon is flood-dominated mostly in its upstream end, where frictional forces exceed inertia accelerations during the tidal cycle and fine sediments settle on the tidal flats and inside the sediment trap. However, this study shows that a large mass of suspended sediments is exported to the ocean, which is contrary to expectations in flood-dominated lagoons. Defining the sediment trap as the rehabilitation scenario S1, the impacts of three additional scenarios on TA are examined. These are scenario S2 (dredging the upstream section of the main channel), scenario S3 (dredging the channels surrounding the flood delta near the inlets), and scenario S4 (raising the ocean level by 0.5 m following climate change predictions). Results show that none of these scenarios modify the tidal flood dominance in the lagoon, although scenarios S2 and S4 decrease its intensity in the upstream region. Nevertheless, all scenarios still contribute to a significant export of sediments to the ocean. This suggests that lagoon management activities should not rely on tidal asymmetry analyses that normally predict upstream sediment transport in flood-dominated lagoons.
Aquatic Environment
Abstract:
Simultaneous nitrification and denitrification (SND) is an efficient method to remove nitrogen in municipal wastewater treatment. However, low dissolved oxygen (DO) concentrations are generally required, leading to serious membrane fouling in membrane bioreactors (MBRs). This study aimed to clarify the synergistic effect of biomass and DO on nitrogen removal and membrane fouling. To achieve this goal, four submerged MBRs equipped with ceramic membranes were operated with different biomass (mixed liquor suspended solids (MLSS)) concentrations (3 000 mg/L, 5 000 mg/L, 7 500 mg/L, and 12 000 mg/L) under various DO concentrations (2.0 mg/L, 1.0 mg/L, and 0.5 mg/L). As a result, increasing biomass in the MBRs enhanced total nitrogen (TN) removal via SND, and excellent TN removal efficiencies of 60.7% and 75.8% were obtained using the MBR with an MLSS concentration of 12 000 mg/L and DO concentrations of 2.0 mg/L and 1.0 mg/L. However, a further decrease in DO deteriorated TN removal due to the inhibition of nitrification. Moreover, high MLSS concentrations were beneficial to membrane fouling control for ceramic membranes in MBRs. The lowest transmembrane pressure development rate was observed for the MBR with an MLSS concentration of 12 000 mg/L. High biomass offset the adverse effect of DO decrease on membrane fouling to some extent, and improved the stability of the reactor. Therefore, biomass might be an important parameter for membrane fouling reduction in ceramic MBRs. Overall, optimal biomass and DO concentrations for TN removal were identified, providing useful information for the successful operation of MBRs with efficient TN removal and membrane fouling control.
Abstract:
Microplastics are emerging micropollutants in water threatening aquatic and land organisms. The microplastic–water system is complicated due to the multiple constituents in the water system and the minuscule size of the plastic waste. Although typical plastic-based materials are inert, the behavior of fragmented plastics is arbitrary and indefinite. When exposed to erratic water environments with the presence of organic and synthetic impurities, pH, temperature, and salt, microplastic surfaces may be potentially active and generate charges in water. These phenomena determine microplastics in water as a colloidal system. The classical Derjaguin Landau Verwey and Overbeek (DLVO) theory can be used to identify the microplastic surface behavior in water. The modification of microplastic surfaces eventually determines the overall interactions between microplastics and other constituents in water. Moreover, the geometry of microplastics and additives present in microcontaminants play a crucial role in their net interactions. Hence, multiple microplastic removal techniques, such as coagulation, filtration, and air flotation, can be developed to address the issue. In many cases, a combination of these methods may be needed to achieve the overall procedure in water treatment plants or generic water systems. Selection of an appropriate microplastic removal technique is crucial and should be based on the water environment and intended water use to ensure its safety.
Abstract:
Highly efficient photocatalysts have been developed for the degradation of contaminated water under visible light. In this study, N-doped TiO2 (N-TiO2) and metal-free graphitic carbon nitride (g-C3N4) composites with various Ti/C molar ratios were prepared with the simple mixing-calcining method. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The photocatalytic activity of N-TiO2/g-C3N4 in the degradation of Rhodamine B (RhB) was investigated, and the electrochemical method was used to determine the origin of the enhanced photoactivity of N-TiO2/g-C3N4. The results showed that N-TiO2 nanoparticles were dispersed on the surface of g-C3N4 and formed a stable heterojunction structure with g-C3N4. The heterojunction between the two semiconductors could effectively prevent the recombination of photogenerated electrons and holes and improve the photocatalytic efficiency of the photocatalyst under visible light irradiation. The photocatalyst exhibited high stability, and the RhB degradation rate was still higher than 82.3% after five cycles.
Abstract:
Advanced material sciences and technologies can help to address environmental challenges in order to achieve sustainable development goals by developing innovative materials capable of mitigating energy consumption in treatment systems. In this study, an innovative electrocoagulation unit for algae removal was optimized, and the effects of various variables, including novel cathode materials (i.e., graphite and reduced graphene oxide nanoparticles), on treatment efficiency and energy consumption were evaluated. Reduced graphene oxide nanoparticles were synthesized and then immobilized on the graphite cathode surface with the modified Hummer's method. Stabilization of nanoparticles was achieved with polytetrafluoroethylene. The use of the reduced graphene oxide nanoparticles-coated cathode led to a significant decrease (42.93%) in energy consumption, compared to the case with an aluminum cathode. In the optimum conditions (a current density of 3 mA/cm2, an electrolyte concentration of 2 g/L, an electrode surface area of 56 cm2, a processing time of 60 min, and a sedimentation time of 30 min), the novel electrocoagulation unit, equipped with an aluminum anode and a reduced graphene oxide nanoparticles-coated cathode electrode, achieved removal efficiencies of 72.69% for Chlorella species and 72.96% for turbidity.
Water Engineering
Abstract:
The bedform-driven hyporheic exchange plays a crucial role in mass transport within natural aquatic ecosystems like streams and rivers. This study aimed to unveil the impact of geometric features of impermeable discrete bedforms on hyporheic exchange by experimentally measuring quantitative hyporheic exchange flux data and variation characteristics in an annual flume. The experiments encompassed diverse conditions involving the ratio of bedform wavelength (λ) to wave height (h) and relative submergence. The study also analyzed the dependence of the effective diffusion coefficient on the geometric characteristics of bedform composition elements. The experimental results showed that, in comparison to a permeable flat bed, the presence of an impermeable discrete bedform tended to either attenuate or enhance hyporheic exchange, contingent on the geometric characteristics of bedform composition elements. The hyporheic exchange flux exhibited an initially increase followed by a decrease with increasing λ/h, with turbulence penetration emerging as the dominant mechanism governing hyporheic exchange for cases with relatively denser bedform composition elements (e.g., λ/h = 4.0). The effective diffusion coefficient peaked at λ/h around 6.0–8.0, owing to a significant augmentation in the relative contribution of pumping exchange to gross hyporheic exchange. Furthermore, the hyporheic exchange intensity generally increased with decreasing relative submergence, primarily attributed to the augmented relative contribution of pumping exchange to gross hyporheic exchange.
Abstract:
During the operational phases of the upper reservoir in a pumped storage power station, the water level, leakage area, and hydraulic gradient of the upper reservoir alter dynamically due to the cyclic pumping and draining activities. The rising groundwater level during storage introduces distinct leakage conditions within the reservoir basin, characterized by unsaturated, partially saturated, and saturated states. Consequently, reservoir basin leakage exhibits variability across these states. To address this issue, this study formulated rational assumptions corresponding to the three leakage states in a reservoir basin and derived analytical expressions for seepage calculation based on Darcy's law and the principles governing groundwater flow refraction. A case study was conducted to investigate the relationship between various factors and leakage. The results showed that leakage primarily depended on the permeability of the impermeable layer in the reservoir basin. The upper reservoir leakage was estimated, and the calculated leakage generally agreed with the measurements, offering insights into the leakage mechanism of the Liyang pumped storage power station. In addition, the reasons for disparities between measured and calculated leakage were analyzed, and the reliability of the developed method was validated. The findings of this study provide a foundation for the seepage control design of upstream reservoirs in similar projects.
Abstract:
This study aimed to devise strategies for alleviating the detrimental impacts of floods in the vicinity of a dike. Experiments were conducted in an open rectangular channel to investigate the flow dynamics under varying dike conditions. To address concerns related to intense whirls and concentrated flow around the dike head, comparative analysis was performed in terms of flow structures and energy reduction around I-shaped and T-shaped dikes with two ratios of wing length (lw) to dike length (ld) (lw/ld = 1.41 and 2.43). The T-shaped dike wings were equipped with diverse designs: angled footing, delta vane, and streamlined tapered, resulting in elevated backwater in front of the dike, reduced velocity, and enhanced energy reduction. The findings indicated that elongating the wing reciprocally affected the depth-averaged velocity (at the dike head and near the adjacent dike bank), concurrently impacting flow deflection, backwater rise, and energy reduction rate. The T-shaped dike, specifically with an angled footing (lw/ld = 2.43), yielded optimal outcomes. These included significant reductions in maximum energy (46%), tip velocity (98%), and dike adjacent bank velocity (90%), as well as significant flow deflection towards the mainstream, outperforming the I-shaped impermeable dike. The proposed solutions exhibit efficacy in mitigating rapid deterioration during floods, securing both the dike head and the neighboring bank to avert failures in high-energy flow.
Abstract:
Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam. However, the deformation monitoring data are often incomplete due to environmental changes, monitoring instrument faults, and human operational errors, thereby often hindering the accurate assessment of actual deformation patterns. This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data. It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring. The proposed method was validated in a concrete dam project, with the model error maintaining within 5%, demonstrating its effectiveness in processing missing deformation data. This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management.