Citation: | Guo-fen Hua, Shang-qing Liu, Xiang-dong Liu, Jin-li Li, Yue Fang, Wen-ting Xie, Xiang Xu. 2024: Seasonal response of nitrogen exchange fluxes to crab disturbance at sediment-water interface in coastal tidal wetlands. Water Science and Engineering, 17(2): 129-138. doi: 10.1016/j.wse.2023.11.007 |
Aller, R.C., Mackin, J.E., Ullman, W.J., 1985. Early chemical diagenesis, sediment-water solute exchange, and storage of reactive organic matter near the mouth of the Changjiang, East China Sea. Cont. Shelf Res. 4(1-2), 227-251. https://doi.org/10.1016/0278-4343(85)90031-7.
|
An, Z.R., Zheng, Y.L., Hou, L.J., Gao, D.Z., Chen, F.Y., Zhou, J., Liu, B.L., Wu, L., Qi, L., Yin, G.Y., Liu, M., 2022. Aggravation of nitrous oxide emissions driven by burrowing crab activities in intertidal marsh soils:Mechanisms and environmental implications. Soil Biology and Biochemistry 171, 108732. https://doi.org/10.1016/j.soilbio.2022.108732.
|
Bertics, V.J., Ziebis, W., 2010. Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments. Environ. Microbiol. 12(11), 3022-3034. https://doi.org/10.1111/j.1462-2920.2010.02279.x.
|
Cai, Y.S., 1991. Application of Helen's formula in área measurement. Housing Science 4, 42-43. https://doi.org/10.1626/j.cnki.hs.1991.04.025.
|
Campbell, C.A., Biederbeck, V.O., Warder, F.G., 1973. Influence of simulated fall and spring conditions on the soil system:III. Effect of method of simulating spring temperatures on ammonification, nitrification, and microbial populations 1. Soil Sci. Soc. Am. J. 37(3), 382-386. https://doi.org/10.2136/sssaj1973.03615995003700030021x.
|
Cheng, H., Jiang, Z.Y., Ma, X.X., Wang, Y.S., 2020. Nitrogen dynamics in the mangrove sediments affected by crabs in the intertidal regions. Ecotoxicology 29, 669-675. https://doi.org/10.1007/s10646-020-02212-5.
|
Fanjul, E., Grela, M.A., Iribarne, O., 2007. Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution. Mar. Ecol. Prog. Ser. 341, 177-190. https://doi.org/10.3354/meps341177.
|
Fanjul, E., Bazterrica, M.C., Escapa, M., Grela, M.A., Iribarne, O., 2011, Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuarine, Coastal and Shelf Science 92(4), 629-638. https://doi.org/10.1016/j.ecss.2011.03.002.
|
Ferreira, T.O., Otero, X.L., Vidal-Torrado, P., Macias, F., 2007. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma 142(1-2), 36-46. https://doi.org/10.1016/j.geoderma.2007.07.010.
|
Gao, X.Q., Liu, Y.J., Tu, Z.G., Wang, W.Q., Wang, M., 2011. Comparison of the M. alternifolia community in the Yunnan mangrove region with the morphology of crab holes in several other habitats. In:Proceedings of the 5th China Mangrove Academic Conference. Ecological Society of China, Wenzhou (in Chinese).
|
Gutierrez, J.L., Jones, C.G., Groffman, P.M., Findlay, S.E.G., Iribarne, O.O., Ribeiro, P.D., Bruschetti, C.M., 2006. The contribution of crab burrow excavation to carbon availability in surficial salt-marsh sediments. Ecosystems 9, 647-658. https://doi.org/10.1007/s10021-006-0135-9.
|
Jenny, M.B., Marco, F., Ramona, M., Tumeka, M., Daniele, D., 2019. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9(1), 732-740. https://doi.org/10.1038/s41598-019-40315-0.
|
Konhauser, K., 2007. Introduction to Geomicrobiology. Blackwell, Malden.
|
Kristensen, E., Kostka, J.E., 2005. Macrofaunal Burrows and Irrigation in Maríne Sediment:Microbiological and Biogeochemical Interactions. American Geophysical Union, San Francisco. https://doi.org/10.1029/CE060p0125.
|
Kristensen, E., Alongi, D.M., 2006. Control by fiddler crabs (Ucavocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnol. Ocennogr. 51, 1557-1571. https://doi.org/10.2307/3841131.
|
Kristensen, E., 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59(1-2), 30-43. https://doi.org/10.1016/j.seares.2007.05.004.
|
Li, J.L., Hua, G.F., Liu, S.Q., Liu, X.D., Huang, Y.Y., Shi, Y., 2021. Effects of crab disturbance on nitrogen migration and transformation in a coastal tidal flat wetland. Environ. Sci. Pollut. Res. 28, 52345-52356. https://doi.org/10.1007/s11356-021-14393-5.
|
Mermillod-Blondin, F., Rosenberg, R., Carcaillet, F., Norling, K., Maulaire, L., 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat. Microb. Ecol. 36(3), 271-284. https://doi.org/10.3354/ame036271.
|
Michaels, R.E., Zieman, J.C., 2013. Fiddler crab (Uca spp.) burrows have little effect on surrounding sediment oxygen concentrations. Exp. Mar. Bio. Ecol. 448, 104-113. https://doi.org/10.1016/j.jembe.2013.06.020.
|
Mokhtari, M., Ghaffar, M.A., Usup, G., Cob, Z.C., 2016. Effects of fiddler crab burrows on sediment properties in the mangrove mudflats of Sungai Sepang, Malaysia. Biology 5(1), 7. https://doi.org/10.3390/biology5010007.
|
National Environmental Bureau, 2002. Water and Wastewater Monitoring and Analysis Methods (4th Edition). National Environmental Bureau, Beijing (in Chinese).
|
Needham, H.R., Pilditch, C.A., Lohrer, A.M., Thrush, S.F., 2013. Density and habitat dependent effects of crab burrows on sediment erodibility. J. Sea Res. 76, 94-104..
|
Otero, X.L., Araujo, J.M.C., Barcellos, D., Queiroz, H.M., Romero, D.J., Nobrega, J.N., Neto, M.S., Ferreira, T.O., 2020. Crab bioturbation and seasonality control nitrous oxide emissions in semiarid mangrove forests (Ceara, Brazil). Applied Sciences 10(7), 2215. https://doi.org/10.3390/app10072215.
|
Qiu, D.D., Cui, B.S., Yan, J.G., Ma, X., Ning, Z.H., Wang, F.F., Sui, H.C., Bai, J.H., 2019. Effect of burrowing crabs on retention and accumulation of soil carbon and nitrogen in an intertidal salt marsh. J. Sea Res. 154, 101808. https://doi.org/10.1016/j.seares.2019.101808.
|
Ridd, P.V., 1996. Flow through animal burrows in mangrove creeks. Estuarine, Coastal and Shelf Science 43(5), 617-625. https://doi.org/10.1006/ecss.1996.0091.
|
Skopp, J., Jawson, M.D., Doran, J.W., 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54(6), 1619-1625. https://doi.org/10.2136/sssaj1990.03615995005400060018x.
|
Thomas, A.R., Blum, L.K., 2010. Importance of the fiddler crab Uca pugnax to salt marsh soil organic matter accumulation. Mar. Ecol. Prog. Ser. 412, 167-177. https://doi.org/10.3354/meps08708.
|
Tian, P., Cao, L.D., Li, J.L., Pu, R.L., Gong, H.B., Li, C.D., 2021. Landscape characteristics and ecological risk assessment based on multi-scenario simulations:A case study of Yancheng coastal wetland, China. Sustainability 13(1), 149. https://doi.org/10.3390/su13010149.
|
Wang, J.Q., Zhang, X.D., Jiang, L.F., Bertness, M.D., Fang, C.M., Chen, J.K., Hara, T., Li, B., 2010. Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an estuarine salt marsh. Ecosystems 13, 586-599. https://doi.org/10.1007/s10021-010-9342-5.
|
Wang, X.H., Li, Y.Z., Guan, B., Yu, J.B., Zhang, Z.S., Wu, H.T., Zhang, K., 2020. Beneficial effects of crab burrowing on the surface soil properties of newly formed mudflats in the Yellow River Delta. Ecohydrol. Hydrobiol. 20(4), 548-555. https://doi.org/10.1016/j.ecohyd.2019.12.001.
|
Warren, J.H., Underwood, A.J., 1986. Effects of burrowing crabs on the topography of mangrove swamps in New South Wales. J. Exp. Maríne Biol. Ecol. 102(2), 223-235. https://doi.org/10.1016/0022-0981(86)90178-4.
|
Wolfrath, B., 1992. Burrowing of the fiddler crab Uca tangeri in the Ria Formosa in Portugal and its influence on sediment structure. Maríne Ecol. Progr. 85(3), 237-243. https://doi.org/10.3354/meps085237.
|
Wu, C., Wu, H., Liu, D., Han, G.X., Zhao, P., Kang, Y.L., 2021. Crab bioturbation significantly alters sediment microbial composition and function in an intertidal marsh. Estuarine, Coastal and Shelf Science 249, 107116. https://doi.org/10.1016/j.ecss.2020.107116.
|
Xiao, K., Wilson, A.M., Li, H.L., Ryan, C., 2019. Crab burrows as preferential flow conduits for groundwater flow and transport in salt marshes:A modeling study. Adv. Water Resour. 132, 103408. https://doi.org/10.1016/j.advwatres.2019.103408.
|
Xie, T., Dou, P., Li, S.Z., Cui, B.S., Bai, J.H., Wang, Q., Ning, Z.H., 2020. Potential effect of bioturbation by burrowing crabs on sediment parameters in coastal salt marshes. Wetlands 40(6), 2775-2784. https://doi.org/10.1007/s13157-020-01341-1.
|
Xin, P., Jin, G., Li, L., Barry, D.A., 2009. Effects of crab burrows on pore water flows in salt marshes. Adv. Water. Resour. 32(3), 439-449. https://doi.org/10.1016/j.advwatres.2008.12.008.
|
Zhang, Y.J., Qu, J.G., Li, D., 2020, Evolution and prediction of coastal wetland landscape pattern:An exploratory study. Journal of Coastal Research 106, 553-556. https://doi.org/10.2112/SI106-125.1.
|
Zhao, H., Yang, W., Fang, C., Qiao, Y.J., Xiao, Y., Cheng, X.L., An, S.Q., 2016. Effects of tidewater and crab burrowing on H2S emission and sulfur storage in Spartina alterniflora marsh. Clean Soil Air Water 43(12), 1682-1688. https://doi.org/10.1002/clen.201300845.
|