Volume 17 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
Guo-fen Hua, Shang-qing Liu, Xiang-dong Liu, Jin-li Li, Yue Fang, Wen-ting Xie, Xiang Xu. 2024: Seasonal response of nitrogen exchange fluxes to crab disturbance at sediment-water interface in coastal tidal wetlands. Water Science and Engineering, 17(2): 129-138. doi: 10.1016/j.wse.2023.11.007
Citation: Guo-fen Hua, Shang-qing Liu, Xiang-dong Liu, Jin-li Li, Yue Fang, Wen-ting Xie, Xiang Xu. 2024: Seasonal response of nitrogen exchange fluxes to crab disturbance at sediment-water interface in coastal tidal wetlands. Water Science and Engineering, 17(2): 129-138. doi: 10.1016/j.wse.2023.11.007

Seasonal response of nitrogen exchange fluxes to crab disturbance at sediment-water interface in coastal tidal wetlands

doi: 10.1016/j.wse.2023.11.007

This work was supported by the National Natural Science Foundation of China (Grant No.52271273) and the Open Foundation of the Key Laboratory of Ministry of Education for Coastal Disaster and Protection (Grant No.Z202201).

  • Received Date: 2022-12-26
  • Accepted Date: 2023-11-02
  • Available Online: 2024-05-14
  • Coastal wetlands are hotspots for nitrogen (N) cycling, and crab burrowing is known to transform N in intertidal marsh soils. However, the underlying mechanisms remain unclear. This study conducted field experiments and used indoor control test devices to investigate the seasonal response of nitrogen to crab disturbance at the sediment-water interface in coastal tidal flat wetlands. The results showed that crab disturbance exhibited significant seasonality with large seasonal differences in cave density and depth. Due to crab disturbance, nitrogen fluxes at the sediment-water interface were much greater in the box with crabs than in the box without crabs. In summer, NH4+-N showed a positive flux from the sediment to the overlying water, but NO2--N and NO3--N showed positive fluxes from the sediment to the overlying water only in early stages. In winter, NH4+-N showed a positive flux from the sediment to the overlying water, but NO2--N and NO3--N both exhibited positive and negative fluxes. These results indicated that the presence of crab burrows can cause the aerobic layer to move downward by approximately 8-15 cm in summer and directly promote nitrification at the sediment surface.


  • loading
  • Aller, R.C., Mackin, J.E., Ullman, W.J., 1985. Early chemical diagenesis, sediment-water solute exchange, and storage of reactive organic matter near the mouth of the Changjiang, East China Sea. Cont. Shelf Res. 4(1-2), 227-251. https://doi.org/10.1016/0278-4343(85)90031-7.
    An, Z.R., Zheng, Y.L., Hou, L.J., Gao, D.Z., Chen, F.Y., Zhou, J., Liu, B.L., Wu, L., Qi, L., Yin, G.Y., Liu, M., 2022. Aggravation of nitrous oxide emissions driven by burrowing crab activities in intertidal marsh soils:Mechanisms and environmental implications. Soil Biology and Biochemistry 171, 108732. https://doi.org/10.1016/j.soilbio.2022.108732.
    Bertics, V.J., Ziebis, W., 2010. Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments. Environ. Microbiol. 12(11), 3022-3034. https://doi.org/10.1111/j.1462-2920.2010.02279.x.
    Cai, Y.S., 1991. Application of Helen's formula in área measurement. Housing Science 4, 42-43. https://doi.org/10.1626/j.cnki.hs.1991.04.025.
    Campbell, C.A., Biederbeck, V.O., Warder, F.G., 1973. Influence of simulated fall and spring conditions on the soil system:III. Effect of method of simulating spring temperatures on ammonification, nitrification, and microbial populations 1. Soil Sci. Soc. Am. J. 37(3), 382-386. https://doi.org/10.2136/sssaj1973.03615995003700030021x.
    Cheng, H., Jiang, Z.Y., Ma, X.X., Wang, Y.S., 2020. Nitrogen dynamics in the mangrove sediments affected by crabs in the intertidal regions. Ecotoxicology 29, 669-675. https://doi.org/10.1007/s10646-020-02212-5.
    Fanjul, E., Grela, M.A., Iribarne, O., 2007. Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution. Mar. Ecol. Prog. Ser. 341, 177-190. https://doi.org/10.3354/meps341177.
    Fanjul, E., Bazterrica, M.C., Escapa, M., Grela, M.A., Iribarne, O., 2011, Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuarine, Coastal and Shelf Science 92(4), 629-638. https://doi.org/10.1016/j.ecss.2011.03.002.
    Ferreira, T.O., Otero, X.L., Vidal-Torrado, P., Macias, F., 2007. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma 142(1-2), 36-46. https://doi.org/10.1016/j.geoderma.2007.07.010.
    Gao, X.Q., Liu, Y.J., Tu, Z.G., Wang, W.Q., Wang, M., 2011. Comparison of the M. alternifolia community in the Yunnan mangrove region with the morphology of crab holes in several other habitats. In:Proceedings of the 5th China Mangrove Academic Conference. Ecological Society of China, Wenzhou (in Chinese).
    Gutierrez, J.L., Jones, C.G., Groffman, P.M., Findlay, S.E.G., Iribarne, O.O., Ribeiro, P.D., Bruschetti, C.M., 2006. The contribution of crab burrow excavation to carbon availability in surficial salt-marsh sediments. Ecosystems 9, 647-658. https://doi.org/10.1007/s10021-006-0135-9.
    Jenny, M.B., Marco, F., Ramona, M., Tumeka, M., Daniele, D., 2019. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9(1), 732-740. https://doi.org/10.1038/s41598-019-40315-0.
    Konhauser, K., 2007. Introduction to Geomicrobiology. Blackwell, Malden.
    Kristensen, E., Kostka, J.E., 2005. Macrofaunal Burrows and Irrigation in Maríne Sediment:Microbiological and Biogeochemical Interactions. American Geophysical Union, San Francisco. https://doi.org/10.1029/CE060p0125.
    Kristensen, E., Alongi, D.M., 2006. Control by fiddler crabs (Ucavocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnol. Ocennogr. 51, 1557-1571. https://doi.org/10.2307/3841131.
    Kristensen, E., 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59(1-2), 30-43. https://doi.org/10.1016/j.seares.2007.05.004.
    Li, J.L., Hua, G.F., Liu, S.Q., Liu, X.D., Huang, Y.Y., Shi, Y., 2021. Effects of crab disturbance on nitrogen migration and transformation in a coastal tidal flat wetland. Environ. Sci. Pollut. Res. 28, 52345-52356. https://doi.org/10.1007/s11356-021-14393-5.
    Mermillod-Blondin, F., Rosenberg, R., Carcaillet, F., Norling, K., Maulaire, L., 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat. Microb. Ecol. 36(3), 271-284. https://doi.org/10.3354/ame036271.
    Michaels, R.E., Zieman, J.C., 2013. Fiddler crab (Uca spp.) burrows have little effect on surrounding sediment oxygen concentrations. Exp. Mar. Bio. Ecol. 448, 104-113. https://doi.org/10.1016/j.jembe.2013.06.020.
    Mokhtari, M., Ghaffar, M.A., Usup, G., Cob, Z.C., 2016. Effects of fiddler crab burrows on sediment properties in the mangrove mudflats of Sungai Sepang, Malaysia. Biology 5(1), 7. https://doi.org/10.3390/biology5010007.
    National Environmental Bureau, 2002. Water and Wastewater Monitoring and Analysis Methods (4th Edition). National Environmental Bureau, Beijing (in Chinese).
    Needham, H.R., Pilditch, C.A., Lohrer, A.M., Thrush, S.F., 2013. Density and habitat dependent effects of crab burrows on sediment erodibility. J. Sea Res. 76, 94-104..
    Otero, X.L., Araujo, J.M.C., Barcellos, D., Queiroz, H.M., Romero, D.J., Nobrega, J.N., Neto, M.S., Ferreira, T.O., 2020. Crab bioturbation and seasonality control nitrous oxide emissions in semiarid mangrove forests (Ceara, Brazil). Applied Sciences 10(7), 2215. https://doi.org/10.3390/app10072215.
    Qiu, D.D., Cui, B.S., Yan, J.G., Ma, X., Ning, Z.H., Wang, F.F., Sui, H.C., Bai, J.H., 2019. Effect of burrowing crabs on retention and accumulation of soil carbon and nitrogen in an intertidal salt marsh. J. Sea Res. 154, 101808. https://doi.org/10.1016/j.seares.2019.101808.
    Ridd, P.V., 1996. Flow through animal burrows in mangrove creeks. Estuarine, Coastal and Shelf Science 43(5), 617-625. https://doi.org/10.1006/ecss.1996.0091.
    Skopp, J., Jawson, M.D., Doran, J.W., 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54(6), 1619-1625. https://doi.org/10.2136/sssaj1990.03615995005400060018x.
    Thomas, A.R., Blum, L.K., 2010. Importance of the fiddler crab Uca pugnax to salt marsh soil organic matter accumulation. Mar. Ecol. Prog. Ser. 412, 167-177. https://doi.org/10.3354/meps08708.
    Tian, P., Cao, L.D., Li, J.L., Pu, R.L., Gong, H.B., Li, C.D., 2021. Landscape characteristics and ecological risk assessment based on multi-scenario simulations:A case study of Yancheng coastal wetland, China. Sustainability 13(1), 149. https://doi.org/10.3390/su13010149.
    Wang, J.Q., Zhang, X.D., Jiang, L.F., Bertness, M.D., Fang, C.M., Chen, J.K., Hara, T., Li, B., 2010. Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an estuarine salt marsh. Ecosystems 13, 586-599. https://doi.org/10.1007/s10021-010-9342-5.
    Wang, X.H., Li, Y.Z., Guan, B., Yu, J.B., Zhang, Z.S., Wu, H.T., Zhang, K., 2020. Beneficial effects of crab burrowing on the surface soil properties of newly formed mudflats in the Yellow River Delta. Ecohydrol. Hydrobiol. 20(4), 548-555. https://doi.org/10.1016/j.ecohyd.2019.12.001.
    Warren, J.H., Underwood, A.J., 1986. Effects of burrowing crabs on the topography of mangrove swamps in New South Wales. J. Exp. Maríne Biol. Ecol. 102(2), 223-235. https://doi.org/10.1016/0022-0981(86)90178-4.
    Wolfrath, B., 1992. Burrowing of the fiddler crab Uca tangeri in the Ria Formosa in Portugal and its influence on sediment structure. Maríne Ecol. Progr. 85(3), 237-243. https://doi.org/10.3354/meps085237.
    Wu, C., Wu, H., Liu, D., Han, G.X., Zhao, P., Kang, Y.L., 2021. Crab bioturbation significantly alters sediment microbial composition and function in an intertidal marsh. Estuarine, Coastal and Shelf Science 249, 107116. https://doi.org/10.1016/j.ecss.2020.107116.
    Xiao, K., Wilson, A.M., Li, H.L., Ryan, C., 2019. Crab burrows as preferential flow conduits for groundwater flow and transport in salt marshes:A modeling study. Adv. Water Resour. 132, 103408. https://doi.org/10.1016/j.advwatres.2019.103408.
    Xie, T., Dou, P., Li, S.Z., Cui, B.S., Bai, J.H., Wang, Q., Ning, Z.H., 2020. Potential effect of bioturbation by burrowing crabs on sediment parameters in coastal salt marshes. Wetlands 40(6), 2775-2784. https://doi.org/10.1007/s13157-020-01341-1.
    Xin, P., Jin, G., Li, L., Barry, D.A., 2009. Effects of crab burrows on pore water flows in salt marshes. Adv. Water. Resour. 32(3), 439-449. https://doi.org/10.1016/j.advwatres.2008.12.008.
    Zhang, Y.J., Qu, J.G., Li, D., 2020, Evolution and prediction of coastal wetland landscape pattern:An exploratory study. Journal of Coastal Research 106, 553-556. https://doi.org/10.2112/SI106-125.1.
    Zhao, H., Yang, W., Fang, C., Qiao, Y.J., Xiao, Y., Cheng, X.L., An, S.Q., 2016. Effects of tidewater and crab burrowing on H2S emission and sulfur storage in Spartina alterniflora marsh. Clean Soil Air Water 43(12), 1682-1688. https://doi.org/10.1002/clen.201300845.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (24) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint