Citation: | Da-wei Guan, Yu-xuan Xie, Zi-shun Yao, Yee-Meng Chiew, Ji-sheng Zhang, Jin-hai Zheng. 2022: Local scour at offshore windfarm monopile foundations: A review. Water Science and Engineering, 15(1): 29-39. doi: 10.1016/j.wse.2021.12.006 |
Al-Hammadi, M., Simons, R.R., 2020. Local scour mechanism around dynamically active marine structures in noncohesive sediments and unidirectional current. J. Waterw. Port Coast. Ocean Eng. 146(1), 07020003.https://doi.org/10.1061/(asce)ww.1943-5460.0000533.
|
Apsilidis, N., Diplas, P., Dancey, C.L., Bouratsis, P., 2015. Time-resolved flow dynamics and Reynolds number effects at a wall-cylinder junction. J. Fluid Mech. 776, 475-511. https://doi.org/10.1017/jfm.2015.341.
|
Armbrust, S.F., 1982. Scour about a Cylindrical Pile Due to Steady and Oscillatory Motion. Ph. D. Dissertation. Texas A&M University, College Station.
|
Bateni, S.M., Borghei, S.M., Jeng, D.S., 2007. Neural network and neurofuzzy assessments for scour depth around bridge piers. Eng. Appl. Artif.Intell. 20(3), 401-414. https://doi.org/10.1016/j.engappai.2006.06.012.
|
Breusers, H.N.C., Nicollet, G., Shen, H.W., 1977. Local scour around cylindrical piers. J. Hydraul. Res. 15(3), 211-252. https://doi.org/10.1080/00221687709499645.
|
Chabert, J., Engeldinger, P., 1956. Etude des Affouillements Authur des Piles des Ponts. Laboratoire National d'Hydraulique, Chatou (in French).
|
Cheng, N.S., Chiew, Y.M., Chen, X.W., 2016. Scaling analysis of pier-scouring processes. J. Eng. Mech. 142(8), 06016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001107.
|
Cheng, Z., Hsu, T.J., Calantoni, J., 2017. SedFoam:A multi-dimensional eulerian two-phase model for sediment transport and its application to momentary bed failure. Coast. Eng. 119, 32-50. https://doi.org/10.1016/j.coastaleng.2016.08.007.
|
Choi, S.U., Cheong, S., 2006. Prediction of local scour around bridge piers using artificial neural networks. J. Am. Water Resour. Assoc. 42(2), 487-494. https://doi.org/10.1111/j.1752-1688.2006.tb03852.x.
|
Corvaro, S., Marini, F., Mancinelli, A., Lorenzoni, C., Brocchini, M., 2018.Hydro-and morpho-dynamics induced by a vertical slender pile under regular and random waves. J. Waterw. Port Coast. Ocean Eng. 144(6), 04018018. https://doi.org/10.1061/(asce)ww.1943-5460.0000470.
|
Damgaard, M., Bayat, M., Andersen, L.V., Ibsen, L.B., 2014. Assessment of the dynamic behaviour of saturated soil subjected to cyclic loading from offshore monopile wind turbine foundations. Comput. Geotech. 61, 116-126. https://doi.org/10.1016/j.compgeo.2014.05.008.
|
De Sitter, G., Weitjens, W., El-Kafafy, M., Devriendt, C., 2013. Monitoring changes in the soil and foundation characteristics of an offshore wind turbine using automated operational modal analysis. Key Eng. Mater. 569, 652-659. https://doi.org/10.4028/www.scientific.net/kem.
|
Debnath, K., Chaudhuri, S., 2010. Laboratory experiments on local scour around cylinder for clay and clay-sand mixed beds. Eng. Geol. 111(1-4), 51-61. https://doi.org/10.1016/j.enggeo.2009.12.003.
|
Deng, L., 2010. Bridge scour:Prediction, modeling, monitoring, and countermeasures-review. Pract. Period. Struct. Des. Construct. 15, 125-134.https://doi.org/10.1061/(ASCE)SC.1943-5576.0000041.
|
Devriendt, C., Magalhães, F., Weijtjens, W., De Sitter, G., Cunha, Á., Guillaume, P., 2014. Structural health monitoring of offshore wind turbines using automated operational modal analysis. Struct. Health Monit. 13(6), 644-659. https://doi.org/10.1177/1475921714556568.
|
Dey, S., Sumer, B.M., Fredsøe, J., 2006. Control of scour at vertical circular piles under waves and current. J. Hydraul. Eng. 132(3), 270-279. https://doi.org/10.1061/(asce)0733-9429(2006)132:3(270).
|
Eadie, R.W., Herbich, J.B., 1987. Scour about a single, cylindrical pile due to combined random waves and a current. In:Edge, B.L. (Ed.), Coastal Engineering 1986. Cubit Engineering Inc., Charleston, pp. 1858-1870.
|
Escarameia, M., May, R., 1999. Scour Around Structures in Tidal Flows. HR Wallingford, Wallingford.
|
Etemad-Shahidi, A., Yasa, R., Kazeminezhad, M.H., 2011. Prediction of waveinduced scour depth under submarine pipelines using machine learning approach. Appl. Ocean Res. 33(1), 54-59. https://doi.org/10.1016/j.apor.2010.11.002.
|
Ettema, R., Constantinescu, G., Melville, B.W., 2017. Flow-field complexity and design estimation of pier-scour depth:Sixty years since laursen and toch. J. Hydraul. Eng. 143(9), 03117006. https://doi.org/(ASCE)Hy.1943-7900.0001330.
|
Foglia, A., Gottardi, G., Govoni, L., Ibsen, L.B., 2015. Modelling the drained response of bucket foundations for offshore wind turbines under general monotonic and cyclic loading. Appl. Ocean Res. 52, 80-91. https://doi.org/10.1016/j.apor.2015.04.005.
|
Fraile, D., Mbistrova, A., Pineda, I., Tardieu, P., Miró, L., 2018. Wind in Power 2017:Annual Combined Onshore and Offshore Wind Energy Statistics.WindEurope, Brussels.
|
Gazi, A.H., Purkayastha, S., Afzal, M.S., 2020. The equilibrium scour depth around a pier under the action of collinear waves and current. J. Mar. Sci.Eng. 8(1), 36. https://doi.org/10.3390/jmse8010036.
|
Graf, W.H., Istiarto, I., 2002. Flow pattern in the scour hole around a cylinder. J.Hydraul. Res. 40(1), 13-20. https://doi.org/10.1080/00221680209499869.
|
Guan, D.W., Chiew, Y.M., Melville, B.W., Zheng, J.H., 2019. Current-induced scour at monopile foundations subjected to lateral vibrations. Coast. Eng. 144, 15-21. https://doi.org/10.1016/j.coastaleng.2018.10.011.
|
Guven, A., Azamathulla, H.M., Zakaria, N.A., 2009. Linear genetic programming for prediction of circular pile scour. Ocean Eng. 36(12-13), 985-991. https://doi.org/10.1016/j.oceaneng.2009.05.010.
|
Han, H.Q., 2006. Research on Local Scour at Bridge Piers under Tidal Current Action. M. E. Dissertation. Zhejiang University, Hangzhou (in Chinese).
|
Harris, J.M., Maarten, H.W., Cooper, B.S., 2004. Offshore windfarms:An approach to scour assessment. In:Proceedings of the 2nd International Conference on Scour and Erosion. Nanyang Technological University, Singapore, pp. 1-9.
|
Harte, M., Basu, B., Nielsen, S.R.K., 2012. Dynamic analysis of wind turbines including soilestructure interaction. Eng. Struct. 45, 509-518. https://doi.org/10.1016/j.engstruct.2012.06.041.
|
Jain, S.C., Fischer, E.E., 1979. Scour Around Circular Bridge Piers at High Froude Numbers. Federal Highway Administration, Department of Transportation, Virginia.
|
Jensen, M.S.,Larsen,B.J., Frigaard, P., Vos, L.D., Christensen, E.D.,Hansen, E.A., Solberg, T., Hjertager, B.H., Bove, S., 2006. Offshore Wind Turbines Situated in Areas with Strong Currents. Offshore Center Danmark, Danmark.
|
Jenssen, U., Manhart, M., 2020. Flow around a scoured bridge pier:A stereoscopic piv analysis. Exp. Fluid 61(10), 217. https://doi.org/10.1007/s00348-020-03044-z.
|
Kidanemariam, A.G., Uhlmann, M., 2017. Formation of sediment patterns in channel flow:Minimal unstable systems and their temporal evolution. J.Fluid Mech. 818, 716-743. https://doi.org/10.1017/jfm.2017.147.
|
Kirkil, G., Constantinescu, S.G., Ettema, R., 2008. Coherent structures in the flow field around a circular cylinder with scour hole. J. Hydraul. Eng. 134(5), 572-587. https://doi.org/10.1061/(asce)0733-9429.
|
Kirkil, G., Constantinescu, G., 2015. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. Phys. Fluids 27(7), 075102. https://doi.org/10.1063/1.4923063.
|
Kobayashi, T., Oda, K., 1994. Experimental study on developing process of local scour around a vertical cylinder. In:Proceeding of the 24th International Conference on Coastal Engineering. ASCE, Kobe, pp. 1284-1297.
|
Kothyari, U.C., Kumar, A., Jain, R.K., 2014. Influence of cohesion on river bed scour in the wake region of piers. J. Hydraul. Eng. 140(1), 1-13.https://doi.org/10.1061/(asce)hy.1943-7900.0000793.
|
Laursen, E.M., Toch, A., 1956. Scour Around Bridge Piers and Abutments.Iowa Highway Research Board, Iowa.
|
Li, J., Tao, J., 2018. CFD-DEM two-way coupled numerical simulation of bridge local scour behavior under clear-water conditions.Transport. Res. Rec. 2672(39), 107-117. https://doi.org/10.1177/0361198118783170.
|
Li, J.L., Guan, D.W., Chiew, Y.M., Zhang, J.S., Zhao, J.L., 2020. Temporal evolution of soil deformations around monopile foundations subjected to cyclic lateral loading. Ocean Eng. 217, 107893. https://doi.org/10.1016/J.OCEANENG.2020.107893.
|
Lim, K.Y., Madsen, O.S., 2016. An experimental study on near-orthogonal waveecurrent interaction over smooth and uniform fixed roughness beds. Coast. Eng. 116, 258-274. https://doi.org/10.1016/j.coastaleng.2016.05.005.
|
Lin, C., Bennett, C., Han, J., Parsons, R.L., 2010. Scour effects on the response of laterally loaded piles considering stress history of sand. Comput. Geotech. 37(7-8), 1008-1014. https://doi.org/10.1016/j.compgeo.2010.08.009.
|
Lin, Y.B., Chen, J.C., Chang, K.C., Chern, J.C., Lai, J.S., 2005. Realtime monitoring of local scour by using fiber bragg grating sensors.Smart Mater. Struct. 14(4), 664. https://doi.org/10.1088/0964-1726/14/4/025.
|
Ling, S.C., Hubbard, P.G., 1956. The hot-film anemometer:A new device for fluid mechanics research. J. Aeronaut. Sci. 23(9), 890-891.
|
Lombardi, D., Bhattacharya, S., Wood, D.M., 2013. Dynamic soilestructure interaction of monopile supported wind turbines in cohesive soil. Soil Dynam. Earthq. Eng. 49, 165-180. https://doi.org/10.1016/j.soildyn.2013. 01.015.
|
Lu, J.Y., Hong, J.H., Su, C.C., Wang, C.Y., Lai, J.S., 2008. Field measurements and simulation of bridge scour depth variations during floods. J. Hydraul.Eng. 134(6), 810-821. https://doi.org/10.1061/(asce)0733-9429(2008) 134:6(810).
|
Margheritini, L., Frigaard, P., Martinelli, L., Lamberti, A., 2006. Scour around monopile foundations for off-shore wind turbines. In:Proceedings of the 1st International Conference on the Application of Physical Modelling to Port and Coastal Protection. University of Porto, Proto, pp. 1-10.
|
Marrone, S., Colagrossi, A., Antuono, M., Colicchio, G., Graziani, G., 2013.An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J. Comput. Phys. 245, 456-475. https://doi.org/10.1016/j.jcp.2013.03.011.
|
McGovern, D.J., Ilic, S., Folkard, A.M., McLelland, S.J., Murphy, B.J., 2014.Time development of scour around a cylinder in simulated tidal currents. J.Hydraul. Eng. 140(6), 04014014. https://doi.org/10.1061/(asce)hy.1943-7900.0000857.
|
Melville, B.W., 1997. Pier and abutment scour:Integrated approach. J.Hydraul. Eng. 123(2), 125-136. https://doi.org/10.1061/(asce)0733-9429(1997)123:2(125).
|
Melville, B.W., Chiew, Y.M., 1999. Time scale for local scour at bridge piers.J. Hydraul. Eng. 125(1), 59-65. https://doi.org/10.1061/(asce)0733-9429(1999)125:1(59).
|
Melville, B.W., Coleman, S.E., 2000. Bridge Scour. Water Resources Publication, Colorado.
|
Michalis, P., Saafi, M., Judd, M., 2013. Capacitive sensors for offshore scour monitoring. PICEE 166(4), 189-196. https://doi.org/10.1680/ener.12.00010.
|
Mostafa, Y.E., 2012. Effect of local and global scour on lateral response of single piles in different soil conditions. Engineering 4(6), 297-306.https://doi.org/10.4236/eng.2012.46039.
|
Myrhaug, D., Ong, M.C., Føien, H., Gjengedal, C., Leira, B.J., 2009. Scour below pipelines and around vertical piles due to second-order random waves plus a current. Ocean. Eng. 36(8), 605-616. https://doi.org/10.1016/j.oceaneng.2009.02.007.
|
Myrhaug, D., Ong, M.C., 2013. Effects of sandeclay mixtures on scour around vertical piles due to long-crested and short-crested nonlinear random waves. J. Offshore Mech. Arctic Eng. 135(3), 034502. https://doi.org/10.1115/1.4023801.
|
Najafzadeh, M., Barani, G.A., Hessami-Kermani, M.R., 2015. Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds. Ocean Eng. 104, 387-396.https://doi.org/10.1016/j.oceaneng.2015.05.016.
|
Najafzadeh, M., Oliveto, G., 2021. More reliable predictions of clear-water scour depth at pile groups by robust artificial intelligence techniques while preserving physical consistency. Soft Comput. 25(7), 5723-5746.https://doi.org/10.1007/s00500-020-05567-3.
|
Nikitas, G., Vimalan, N.J., Bhattacharya, S., 2016. An innovative cyclic loading device to study long term performance of offshore wind turbines.Soil Dynam. Earthq. Eng. 82, 154-160. https://doi.org/10.1016/j.soildyn.2015.12.008.
|
Olabarrieta, M., Medina, R., Castanedo, S., 2010. Effects of waveecurrent interaction on the current profile. Coast. Eng. 57(7), 643-655. https://doi.org/10.1016/j.coastaleng.2010.02.003.
|
Olsen, N.R.B., Melaaen, M.C., 1993. Three-dimensional calculation of scour around cylinders. J. Hydraul. Eng. 119(9), 1048-1054. https://doi.org/10.1061/(asce)0733-9429(1993)119:9(1048).
|
Page, A.M., Næss, V., De Vaal, J.B., Eiksund, G.R., Nygaard, T.A., 2019.Impact of foundation modelling in offshore wind turbines:Comparison between simulations and field data. Mar. Struct. 64, 379-400. https://doi.org/10.1016/j.marstruc.2018.11.010.
|
Paik, J., Escauriaza, C., Sotiropoulos, F., 2007. On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Phys.Fluids 19(4), 045107. https://doi.org/10.1063/1.2716813.
|
Prendergast, L.J., Hester, D., Gavin, K., O'Sullivan, J.J., 2013. An investigation of the changes in the natural frequency of a pile affected by scour. J.Sound Vib. 332(25), 6685-6702. https://doi.org/10.1016/j.jsv.2013.08. 020.
|
Prendergast, L.J., Gavin, K., Doherty, P., 2015. An investigation into the effect of scour on the natural frequency of an offshore wind turbine. Ocean Eng. 101, 1-11. https://doi.org/10.1016/j.oceaneng.2015.04.017.
|
Qi, W.G., Gao, F.P., 2014a. Physical modeling of local scour development around a large-diameter monopile in combined waves and current. Coast.Eng. 83, 72-81. https://doi.org/10.1016/j.coastaleng.2013.10.007.
|
Qi, W.G., Gao, F.P., 2014b. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Technol. Sci. 57(5), 1030-1039. https://doi.org/10.1007/s11431-014-5538-9.
|
Raaijmakers, T., Rudolph, D., 2008. Time-dependent scour development under combined current and waves conditions-laboratory experiments with online monitoring technique. In:Proceedings of the 4th International Conference on Scour and Erosion (ICSE-4). Tokyo, pp. 152-161.
|
Rambabu, M., Rao, S.N., Sundar, V., 2003. Current-induced scour around a vertical pile in cohesive soil. Ocean. Eng. 30(7), 893-920. https://doi.org/10.1016/s0029-8018(02)00063-x.
|
Richardson, E.V., Davis, S.R., 2001. Evaluating Scour at Bridges, United States. Federal Highway Administration, Washington, D.C.
|
Richardson, J.E., Panchang, V.G., 1998. Three-dimensional simulation of scour-inducing flow at bridge piers. J. Hydraul. Eng. 124(5), 530-540.https://doi.org/10.1061/(asce)0733-9429(1998)124:5(530).
|
Roulund, A., Sumer, B.M., Fredsoe, J., Michelsen, J., 2005. Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351-401. https://doi.org/10.1017/s0022112005004507.
|
Samadi, M., Afshar, M.H., Jabbari, E., Sarkardeh, H., 2021. Prediction of current-induced scour depth around pile groups using MARS, CART, and ANN approaches. Mar. Georesour. Geotechnol. 39(5), 577-588. https://doi.org/10.1080/1064119x.2020.1731025.
|
Schanderl, W., Jenssen, U., Strobl, C., Manhart, M., 2017. The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder. J. Fluid Mech. 827, 285-321. https://doi.org/10.1017/jfm.2017.486.
|
Schendel, A., Hildebrandt, A., Goseberg, N., Schlurmann, T., 2018. Processes and evolution of scour around a monopile induced by tidal currents. Coast.Eng. 139, 65-84. https://doi.org/10.1016/j.coastaleng.2018.05.004.
|
Schwind, R., 1962. The Three-Dimensional Boundary Layer near a Struture.Massachusetts Institute of Technology, Massachusetts.
|
Shen, H.W., Schneider, V.R., Karaki, S., 1969. Local scour around bridge piers. J. Hydraul. Div. 95(6), 1919-1940. https://doi.org/10.1061/JYCEAJ.0002197.
|
Sheppard, D.M., Miller Jr., W., 2006. Live-bed local pier scour experiments. J.Hydraul. Eng. 132(7), 635-642. https://doi.org/10.1061/(asce)0733-9429(2006)132:7(635).
|
Sheppard, D.M., Melville, B., Demir, H., 2014. Evaluation of existing equations for local scour at bridge piers. J. Hydraul. Eng. 140(1), 14-23.https://doi.org/10.1061/(asce)hy.1943-7900.0000800.
|
Singh, S.K., Raushan, P.K., Debnath, K., 2018. Combined effect of wave and current in rough bed free surface flow. Ocean Eng. 160, 20-32. https://doi.org/10.1016/j.oceaneng.2018.04.055.
|
Sumer, B.M., Fredsøe, J., Christiansen, N., 1992. Scour around vertical pile in waves. J. Waterw. Port Coast. Ocean Eng. 118(1), 15-31. https://doi.org/10.1061/(asce)0733-950x(1992)118:1(15).
|
Sumer, B.M., Fredsøe, J., 2001. Scour around pile in combined waves and current. J. Hydraul. Eng. 127(5), 403-411. https://doi.org/10.1061/(asce) 0733-9429(2001)127:5(403).
|
Sumer, B.M., Fredsøe, J., 2002a. The Mechanics of Scour in the Marine Environment. World Scientific, Singapore.
|
Sumer, B.M., Fredsøe, J., 2002b. Time scale of scour around a large vertical cylinder in waves. In:Proceedings of the 12th International Offshore and Polar Engineering Conference. Onepetro, Kitakyushu, pp. 55-60.
|
Sumer, B.M., 2007. Mathematical modelling of scour:A review. J. Hydraul.Res. 45(6), 723-735. https://doi.org/10.1080/00221686.2007.9521811.
|
Tseng, M.H., Yen, C.L., Song, C.C.S., 2000. Computation of threedimensional flow around square and circular piers. Int. J. Numer.Methods Fluid. 34(3), 207-227. https://doi.org/10.1002/1097-0363(20001015)34:3<207:Aid-fld31>3.0.Co;2-r.
|
Wei, G., Chen, H.C., Ting, F., Briaud, J.L., Gudavalli, S.R., Perugu, S., 1997.Numerical Simulation to Study Scour Rate in Cohesive Soils. Texas A&M University, College Station.
|
Whitehouse, R.J.S., Harris, J.M., Sutherland, J., Rees, J., 2011. The nature of scour development and scour protection at offshore windfarm foundations.Mar. Pollut. Bull. 62(1), 73-88. https://doi.org/10.1016/j.marpolbul.2010. 09.007.
|
Xiang, Q., Wei, K., Qiu, F., Yao, C., Li, Y., 2020. Experimental study of local scour around caissons under unidirectional and tidal currents. Water 12(3), 640. https://doi.org/10.3390/w12030640.
|
Xiong, W., Cai, C., Kong, B., Kong, X., 2016. CFD simulations and analyses for bridge-scour development using a dynamic-mesh updating technique. J.Comput. Civ. Eng. 30(1), 04014121. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000458.
|
Yazdanfar, Z., Lester, D., Robert, D., Setunge, S., 2021. A novel CFD-DEM upscaling method for prediction of scour under live-bed conditions. Ocean Eng. 220, 108442. https://doi.org/10.1016/j.oceaneng.2020.108442.
|
Zanke, U.C., Hsu, T.W., Roland, A., Link, O., Diab, R., 2011. Equilibrium scour depths around piles in noncohesive sediments under currents and waves. Coast. Eng. 58(10), 986-991. https://doi.org/10.1016/j.coastaleng. 2011.05.011.
|
Zhang, J.F., Zhang, Q.H., Maa, J.P.Y., Qiao, G.Q., 2013. Lattice Boltzmann simulation of turbulence-induced flocculation of cohesive sediment. Ocean Dynam. 63(9-10), 1123-1135. https://doi.org/10.1007/s10236-013-0646-9.
|
Zhang, Y., Zhao, M., Kwok, K.C., Liu, M., 2015. Computational fluid dynamicsediscrete element method analysis of the onset of scour around subsea pipelines. Appl. Math. Model. 39(23-24), 7611-7619. https://doi.org/10.1016/j.apm.2015.03.058.
|