Volume 15 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Da-wei Guan, Yu-xuan Xie, Zi-shun Yao, Yee-Meng Chiew, Ji-sheng Zhang, Jin-hai Zheng. 2022: Local scour at offshore windfarm monopile foundations: A review. Water Science and Engineering, 15(1): 29-39. doi: 10.1016/j.wse.2021.12.006
Citation: Da-wei Guan, Yu-xuan Xie, Zi-shun Yao, Yee-Meng Chiew, Ji-sheng Zhang, Jin-hai Zheng. 2022: Local scour at offshore windfarm monopile foundations: A review. Water Science and Engineering, 15(1): 29-39. doi: 10.1016/j.wse.2021.12.006

Local scour at offshore windfarm monopile foundations: A review

doi: 10.1016/j.wse.2021.12.006
Funds:

This work was supported by the Major International Joint Research Project POW3M of the National Natural Science Foundation of China (Grant No. 51920105013) and the General Project of the National Natural Science Foundation of China (Grant No. 52071127).

  • Received Date: 2021-07-28
  • Accepted Date: 2021-10-15
  • Available Online: 2022-03-07
  • In this article, current research findings of local scour at offshore windfarm monopile foundations are presented. The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized, including the current-only condition, wave-only condition, combined wave-current condition, and complex dynamic condition. Furthermore, this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions. The weakness of existing researches and future prospects are also discussed. It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings. The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.

     

  • loading
  • Al-Hammadi, M., Simons, R.R., 2020. Local scour mechanism around dynamically active marine structures in noncohesive sediments and unidirectional current. J. Waterw. Port Coast. Ocean Eng. 146(1), 07020003.https://doi.org/10.1061/(asce)ww.1943-5460.0000533.
    Apsilidis, N., Diplas, P., Dancey, C.L., Bouratsis, P., 2015. Time-resolved flow dynamics and Reynolds number effects at a wall-cylinder junction. J. Fluid Mech. 776, 475-511. https://doi.org/10.1017/jfm.2015.341.
    Armbrust, S.F., 1982. Scour about a Cylindrical Pile Due to Steady and Oscillatory Motion. Ph. D. Dissertation. Texas A&M University, College Station.
    Bateni, S.M., Borghei, S.M., Jeng, D.S., 2007. Neural network and neurofuzzy assessments for scour depth around bridge piers. Eng. Appl. Artif.Intell. 20(3), 401-414. https://doi.org/10.1016/j.engappai.2006.06.012.
    Breusers, H.N.C., Nicollet, G., Shen, H.W., 1977. Local scour around cylindrical piers. J. Hydraul. Res. 15(3), 211-252. https://doi.org/10.1080/00221687709499645.
    Chabert, J., Engeldinger, P., 1956. Etude des Affouillements Authur des Piles des Ponts. Laboratoire National d'Hydraulique, Chatou (in French).
    Cheng, N.S., Chiew, Y.M., Chen, X.W., 2016. Scaling analysis of pier-scouring processes. J. Eng. Mech. 142(8), 06016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001107.
    Cheng, Z., Hsu, T.J., Calantoni, J., 2017. SedFoam:A multi-dimensional eulerian two-phase model for sediment transport and its application to momentary bed failure. Coast. Eng. 119, 32-50. https://doi.org/10.1016/j.coastaleng.2016.08.007.
    Choi, S.U., Cheong, S., 2006. Prediction of local scour around bridge piers using artificial neural networks. J. Am. Water Resour. Assoc. 42(2), 487-494. https://doi.org/10.1111/j.1752-1688.2006.tb03852.x.
    Corvaro, S., Marini, F., Mancinelli, A., Lorenzoni, C., Brocchini, M., 2018.Hydro-and morpho-dynamics induced by a vertical slender pile under regular and random waves. J. Waterw. Port Coast. Ocean Eng. 144(6), 04018018. https://doi.org/10.1061/(asce)ww.1943-5460.0000470.
    Damgaard, M., Bayat, M., Andersen, L.V., Ibsen, L.B., 2014. Assessment of the dynamic behaviour of saturated soil subjected to cyclic loading from offshore monopile wind turbine foundations. Comput. Geotech. 61, 116-126. https://doi.org/10.1016/j.compgeo.2014.05.008.
    De Sitter, G., Weitjens, W., El-Kafafy, M., Devriendt, C., 2013. Monitoring changes in the soil and foundation characteristics of an offshore wind turbine using automated operational modal analysis. Key Eng. Mater. 569, 652-659. https://doi.org/10.4028/www.scientific.net/kem.
    Debnath, K., Chaudhuri, S., 2010. Laboratory experiments on local scour around cylinder for clay and clay-sand mixed beds. Eng. Geol. 111(1-4), 51-61. https://doi.org/10.1016/j.enggeo.2009.12.003.
    Deng, L., 2010. Bridge scour:Prediction, modeling, monitoring, and countermeasures-review. Pract. Period. Struct. Des. Construct. 15, 125-134.https://doi.org/10.1061/(ASCE)SC.1943-5576.0000041.
    Devriendt, C., Magalhães, F., Weijtjens, W., De Sitter, G., Cunha, Á., Guillaume, P., 2014. Structural health monitoring of offshore wind turbines using automated operational modal analysis. Struct. Health Monit. 13(6), 644-659. https://doi.org/10.1177/1475921714556568.
    Dey, S., Sumer, B.M., Fredsøe, J., 2006. Control of scour at vertical circular piles under waves and current. J. Hydraul. Eng. 132(3), 270-279. https://doi.org/10.1061/(asce)0733-9429(2006)132:3(270).
    Eadie, R.W., Herbich, J.B., 1987. Scour about a single, cylindrical pile due to combined random waves and a current. In:Edge, B.L. (Ed.), Coastal Engineering 1986. Cubit Engineering Inc., Charleston, pp. 1858-1870.
    Escarameia, M., May, R., 1999. Scour Around Structures in Tidal Flows. HR Wallingford, Wallingford.
    Etemad-Shahidi, A., Yasa, R., Kazeminezhad, M.H., 2011. Prediction of waveinduced scour depth under submarine pipelines using machine learning approach. Appl. Ocean Res. 33(1), 54-59. https://doi.org/10.1016/j.apor.2010.11.002.
    Ettema, R., Constantinescu, G., Melville, B.W., 2017. Flow-field complexity and design estimation of pier-scour depth:Sixty years since laursen and toch. J. Hydraul. Eng. 143(9), 03117006. https://doi.org/(ASCE)Hy.1943-7900.0001330.
    Foglia, A., Gottardi, G., Govoni, L., Ibsen, L.B., 2015. Modelling the drained response of bucket foundations for offshore wind turbines under general monotonic and cyclic loading. Appl. Ocean Res. 52, 80-91. https://doi.org/10.1016/j.apor.2015.04.005.
    Fraile, D., Mbistrova, A., Pineda, I., Tardieu, P., Miró, L., 2018. Wind in Power 2017:Annual Combined Onshore and Offshore Wind Energy Statistics.WindEurope, Brussels.
    Gazi, A.H., Purkayastha, S., Afzal, M.S., 2020. The equilibrium scour depth around a pier under the action of collinear waves and current. J. Mar. Sci.Eng. 8(1), 36. https://doi.org/10.3390/jmse8010036.
    Graf, W.H., Istiarto, I., 2002. Flow pattern in the scour hole around a cylinder. J.Hydraul. Res. 40(1), 13-20. https://doi.org/10.1080/00221680209499869.
    Guan, D.W., Chiew, Y.M., Melville, B.W., Zheng, J.H., 2019. Current-induced scour at monopile foundations subjected to lateral vibrations. Coast. Eng. 144, 15-21. https://doi.org/10.1016/j.coastaleng.2018.10.011.
    Guven, A., Azamathulla, H.M., Zakaria, N.A., 2009. Linear genetic programming for prediction of circular pile scour. Ocean Eng. 36(12-13), 985-991. https://doi.org/10.1016/j.oceaneng.2009.05.010.
    Han, H.Q., 2006. Research on Local Scour at Bridge Piers under Tidal Current Action. M. E. Dissertation. Zhejiang University, Hangzhou (in Chinese).
    Harris, J.M., Maarten, H.W., Cooper, B.S., 2004. Offshore windfarms:An approach to scour assessment. In:Proceedings of the 2nd International Conference on Scour and Erosion. Nanyang Technological University, Singapore, pp. 1-9.
    Harte, M., Basu, B., Nielsen, S.R.K., 2012. Dynamic analysis of wind turbines including soilestructure interaction. Eng. Struct. 45, 509-518. https://doi.org/10.1016/j.engstruct.2012.06.041.
    Jain, S.C., Fischer, E.E., 1979. Scour Around Circular Bridge Piers at High Froude Numbers. Federal Highway Administration, Department of Transportation, Virginia.
    Jensen, M.S.,Larsen,B.J., Frigaard, P., Vos, L.D., Christensen, E.D.,Hansen, E.A., Solberg, T., Hjertager, B.H., Bove, S., 2006. Offshore Wind Turbines Situated in Areas with Strong Currents. Offshore Center Danmark, Danmark.
    Jenssen, U., Manhart, M., 2020. Flow around a scoured bridge pier:A stereoscopic piv analysis. Exp. Fluid 61(10), 217. https://doi.org/10.1007/s00348-020-03044-z.
    Kidanemariam, A.G., Uhlmann, M., 2017. Formation of sediment patterns in channel flow:Minimal unstable systems and their temporal evolution. J.Fluid Mech. 818, 716-743. https://doi.org/10.1017/jfm.2017.147.
    Kirkil, G., Constantinescu, S.G., Ettema, R., 2008. Coherent structures in the flow field around a circular cylinder with scour hole. J. Hydraul. Eng. 134(5), 572-587. https://doi.org/10.1061/(asce)0733-9429.
    Kirkil, G., Constantinescu, G., 2015. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. Phys. Fluids 27(7), 075102. https://doi.org/10.1063/1.4923063.
    Kobayashi, T., Oda, K., 1994. Experimental study on developing process of local scour around a vertical cylinder. In:Proceeding of the 24th International Conference on Coastal Engineering. ASCE, Kobe, pp. 1284-1297.
    Kothyari, U.C., Kumar, A., Jain, R.K., 2014. Influence of cohesion on river bed scour in the wake region of piers. J. Hydraul. Eng. 140(1), 1-13.https://doi.org/10.1061/(asce)hy.1943-7900.0000793.
    Laursen, E.M., Toch, A., 1956. Scour Around Bridge Piers and Abutments.Iowa Highway Research Board, Iowa.
    Li, J., Tao, J., 2018. CFD-DEM two-way coupled numerical simulation of bridge local scour behavior under clear-water conditions.Transport. Res. Rec. 2672(39), 107-117. https://doi.org/10.1177/0361198118783170.
    Li, J.L., Guan, D.W., Chiew, Y.M., Zhang, J.S., Zhao, J.L., 2020. Temporal evolution of soil deformations around monopile foundations subjected to cyclic lateral loading. Ocean Eng. 217, 107893. https://doi.org/10.1016/J.OCEANENG.2020.107893.
    Lim, K.Y., Madsen, O.S., 2016. An experimental study on near-orthogonal waveecurrent interaction over smooth and uniform fixed roughness beds. Coast. Eng. 116, 258-274. https://doi.org/10.1016/j.coastaleng.2016.05.005.
    Lin, C., Bennett, C., Han, J., Parsons, R.L., 2010. Scour effects on the response of laterally loaded piles considering stress history of sand. Comput. Geotech. 37(7-8), 1008-1014. https://doi.org/10.1016/j.compgeo.2010.08.009.
    Lin, Y.B., Chen, J.C., Chang, K.C., Chern, J.C., Lai, J.S., 2005. Realtime monitoring of local scour by using fiber bragg grating sensors.Smart Mater. Struct. 14(4), 664. https://doi.org/10.1088/0964-1726/14/4/025.
    Ling, S.C., Hubbard, P.G., 1956. The hot-film anemometer:A new device for fluid mechanics research. J. Aeronaut. Sci. 23(9), 890-891.
    Lombardi, D., Bhattacharya, S., Wood, D.M., 2013. Dynamic soilestructure interaction of monopile supported wind turbines in cohesive soil. Soil Dynam. Earthq. Eng. 49, 165-180. https://doi.org/10.1016/j.soildyn.2013. 01.015.
    Lu, J.Y., Hong, J.H., Su, C.C., Wang, C.Y., Lai, J.S., 2008. Field measurements and simulation of bridge scour depth variations during floods. J. Hydraul.Eng. 134(6), 810-821. https://doi.org/10.1061/(asce)0733-9429(2008) 134:6(810).
    Margheritini, L., Frigaard, P., Martinelli, L., Lamberti, A., 2006. Scour around monopile foundations for off-shore wind turbines. In:Proceedings of the 1st International Conference on the Application of Physical Modelling to Port and Coastal Protection. University of Porto, Proto, pp. 1-10.
    Marrone, S., Colagrossi, A., Antuono, M., Colicchio, G., Graziani, G., 2013.An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J. Comput. Phys. 245, 456-475. https://doi.org/10.1016/j.jcp.2013.03.011.
    McGovern, D.J., Ilic, S., Folkard, A.M., McLelland, S.J., Murphy, B.J., 2014.Time development of scour around a cylinder in simulated tidal currents. J.Hydraul. Eng. 140(6), 04014014. https://doi.org/10.1061/(asce)hy.1943-7900.0000857.
    Melville, B.W., 1997. Pier and abutment scour:Integrated approach. J.Hydraul. Eng. 123(2), 125-136. https://doi.org/10.1061/(asce)0733-9429(1997)123:2(125).
    Melville, B.W., Chiew, Y.M., 1999. Time scale for local scour at bridge piers.J. Hydraul. Eng. 125(1), 59-65. https://doi.org/10.1061/(asce)0733-9429(1999)125:1(59).
    Melville, B.W., Coleman, S.E., 2000. Bridge Scour. Water Resources Publication, Colorado.
    Michalis, P., Saafi, M., Judd, M., 2013. Capacitive sensors for offshore scour monitoring. PICEE 166(4), 189-196. https://doi.org/10.1680/ener.12.00010.
    Mostafa, Y.E., 2012. Effect of local and global scour on lateral response of single piles in different soil conditions. Engineering 4(6), 297-306.https://doi.org/10.4236/eng.2012.46039.
    Myrhaug, D., Ong, M.C., Føien, H., Gjengedal, C., Leira, B.J., 2009. Scour below pipelines and around vertical piles due to second-order random waves plus a current. Ocean. Eng. 36(8), 605-616. https://doi.org/10.1016/j.oceaneng.2009.02.007.
    Myrhaug, D., Ong, M.C., 2013. Effects of sandeclay mixtures on scour around vertical piles due to long-crested and short-crested nonlinear random waves. J. Offshore Mech. Arctic Eng. 135(3), 034502. https://doi.org/10.1115/1.4023801.
    Najafzadeh, M., Barani, G.A., Hessami-Kermani, M.R., 2015. Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds. Ocean Eng. 104, 387-396.https://doi.org/10.1016/j.oceaneng.2015.05.016.
    Najafzadeh, M., Oliveto, G., 2021. More reliable predictions of clear-water scour depth at pile groups by robust artificial intelligence techniques while preserving physical consistency. Soft Comput. 25(7), 5723-5746.https://doi.org/10.1007/s00500-020-05567-3.
    Nikitas, G., Vimalan, N.J., Bhattacharya, S., 2016. An innovative cyclic loading device to study long term performance of offshore wind turbines.Soil Dynam. Earthq. Eng. 82, 154-160. https://doi.org/10.1016/j.soildyn.2015.12.008.
    Olabarrieta, M., Medina, R., Castanedo, S., 2010. Effects of waveecurrent interaction on the current profile. Coast. Eng. 57(7), 643-655. https://doi.org/10.1016/j.coastaleng.2010.02.003.
    Olsen, N.R.B., Melaaen, M.C., 1993. Three-dimensional calculation of scour around cylinders. J. Hydraul. Eng. 119(9), 1048-1054. https://doi.org/10.1061/(asce)0733-9429(1993)119:9(1048).
    Page, A.M., Næss, V., De Vaal, J.B., Eiksund, G.R., Nygaard, T.A., 2019.Impact of foundation modelling in offshore wind turbines:Comparison between simulations and field data. Mar. Struct. 64, 379-400. https://doi.org/10.1016/j.marstruc.2018.11.010.
    Paik, J., Escauriaza, C., Sotiropoulos, F., 2007. On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Phys.Fluids 19(4), 045107. https://doi.org/10.1063/1.2716813.
    Prendergast, L.J., Hester, D., Gavin, K., O'Sullivan, J.J., 2013. An investigation of the changes in the natural frequency of a pile affected by scour. J.Sound Vib. 332(25), 6685-6702. https://doi.org/10.1016/j.jsv.2013.08. 020.
    Prendergast, L.J., Gavin, K., Doherty, P., 2015. An investigation into the effect of scour on the natural frequency of an offshore wind turbine. Ocean Eng. 101, 1-11. https://doi.org/10.1016/j.oceaneng.2015.04.017.
    Qi, W.G., Gao, F.P., 2014a. Physical modeling of local scour development around a large-diameter monopile in combined waves and current. Coast.Eng. 83, 72-81. https://doi.org/10.1016/j.coastaleng.2013.10.007.
    Qi, W.G., Gao, F.P., 2014b. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Technol. Sci. 57(5), 1030-1039. https://doi.org/10.1007/s11431-014-5538-9.
    Raaijmakers, T., Rudolph, D., 2008. Time-dependent scour development under combined current and waves conditions-laboratory experiments with online monitoring technique. In:Proceedings of the 4th International Conference on Scour and Erosion (ICSE-4). Tokyo, pp. 152-161.
    Rambabu, M., Rao, S.N., Sundar, V., 2003. Current-induced scour around a vertical pile in cohesive soil. Ocean. Eng. 30(7), 893-920. https://doi.org/10.1016/s0029-8018(02)00063-x.
    Richardson, E.V., Davis, S.R., 2001. Evaluating Scour at Bridges, United States. Federal Highway Administration, Washington, D.C.
    Richardson, J.E., Panchang, V.G., 1998. Three-dimensional simulation of scour-inducing flow at bridge piers. J. Hydraul. Eng. 124(5), 530-540.https://doi.org/10.1061/(asce)0733-9429(1998)124:5(530).
    Roulund, A., Sumer, B.M., Fredsoe, J., Michelsen, J., 2005. Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351-401. https://doi.org/10.1017/s0022112005004507.
    Samadi, M., Afshar, M.H., Jabbari, E., Sarkardeh, H., 2021. Prediction of current-induced scour depth around pile groups using MARS, CART, and ANN approaches. Mar. Georesour. Geotechnol. 39(5), 577-588. https://doi.org/10.1080/1064119x.2020.1731025.
    Schanderl, W., Jenssen, U., Strobl, C., Manhart, M., 2017. The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder. J. Fluid Mech. 827, 285-321. https://doi.org/10.1017/jfm.2017.486.
    Schendel, A., Hildebrandt, A., Goseberg, N., Schlurmann, T., 2018. Processes and evolution of scour around a monopile induced by tidal currents. Coast.Eng. 139, 65-84. https://doi.org/10.1016/j.coastaleng.2018.05.004.
    Schwind, R., 1962. The Three-Dimensional Boundary Layer near a Struture.Massachusetts Institute of Technology, Massachusetts.
    Shen, H.W., Schneider, V.R., Karaki, S., 1969. Local scour around bridge piers. J. Hydraul. Div. 95(6), 1919-1940. https://doi.org/10.1061/JYCEAJ.0002197.
    Sheppard, D.M., Miller Jr., W., 2006. Live-bed local pier scour experiments. J.Hydraul. Eng. 132(7), 635-642. https://doi.org/10.1061/(asce)0733-9429(2006)132:7(635).
    Sheppard, D.M., Melville, B., Demir, H., 2014. Evaluation of existing equations for local scour at bridge piers. J. Hydraul. Eng. 140(1), 14-23.https://doi.org/10.1061/(asce)hy.1943-7900.0000800.
    Singh, S.K., Raushan, P.K., Debnath, K., 2018. Combined effect of wave and current in rough bed free surface flow. Ocean Eng. 160, 20-32. https://doi.org/10.1016/j.oceaneng.2018.04.055.
    Sumer, B.M., Fredsøe, J., Christiansen, N., 1992. Scour around vertical pile in waves. J. Waterw. Port Coast. Ocean Eng. 118(1), 15-31. https://doi.org/10.1061/(asce)0733-950x(1992)118:1(15).
    Sumer, B.M., Fredsøe, J., 2001. Scour around pile in combined waves and current. J. Hydraul. Eng. 127(5), 403-411. https://doi.org/10.1061/(asce) 0733-9429(2001)127:5(403).
    Sumer, B.M., Fredsøe, J., 2002a. The Mechanics of Scour in the Marine Environment. World Scientific, Singapore.
    Sumer, B.M., Fredsøe, J., 2002b. Time scale of scour around a large vertical cylinder in waves. In:Proceedings of the 12th International Offshore and Polar Engineering Conference. Onepetro, Kitakyushu, pp. 55-60.
    Sumer, B.M., 2007. Mathematical modelling of scour:A review. J. Hydraul.Res. 45(6), 723-735. https://doi.org/10.1080/00221686.2007.9521811.
    Tseng, M.H., Yen, C.L., Song, C.C.S., 2000. Computation of threedimensional flow around square and circular piers. Int. J. Numer.Methods Fluid. 34(3), 207-227. https://doi.org/10.1002/1097-0363(20001015)34:3<207:Aid-fld31>3.0.Co;2-r.
    Wei, G., Chen, H.C., Ting, F., Briaud, J.L., Gudavalli, S.R., Perugu, S., 1997.Numerical Simulation to Study Scour Rate in Cohesive Soils. Texas A&M University, College Station.
    Whitehouse, R.J.S., Harris, J.M., Sutherland, J., Rees, J., 2011. The nature of scour development and scour protection at offshore windfarm foundations.Mar. Pollut. Bull. 62(1), 73-88. https://doi.org/10.1016/j.marpolbul.2010. 09.007.
    Xiang, Q., Wei, K., Qiu, F., Yao, C., Li, Y., 2020. Experimental study of local scour around caissons under unidirectional and tidal currents. Water 12(3), 640. https://doi.org/10.3390/w12030640.
    Xiong, W., Cai, C., Kong, B., Kong, X., 2016. CFD simulations and analyses for bridge-scour development using a dynamic-mesh updating technique. J.Comput. Civ. Eng. 30(1), 04014121. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000458.
    Yazdanfar, Z., Lester, D., Robert, D., Setunge, S., 2021. A novel CFD-DEM upscaling method for prediction of scour under live-bed conditions. Ocean Eng. 220, 108442. https://doi.org/10.1016/j.oceaneng.2020.108442.
    Zanke, U.C., Hsu, T.W., Roland, A., Link, O., Diab, R., 2011. Equilibrium scour depths around piles in noncohesive sediments under currents and waves. Coast. Eng. 58(10), 986-991. https://doi.org/10.1016/j.coastaleng. 2011.05.011.
    Zhang, J.F., Zhang, Q.H., Maa, J.P.Y., Qiao, G.Q., 2013. Lattice Boltzmann simulation of turbulence-induced flocculation of cohesive sediment. Ocean Dynam. 63(9-10), 1123-1135. https://doi.org/10.1007/s10236-013-0646-9.
    Zhang, Y., Zhao, M., Kwok, K.C., Liu, M., 2015. Computational fluid dynamicsediscrete element method analysis of the onset of scour around subsea pipelines. Appl. Math. Model. 39(23-24), 7611-7619. https://doi.org/10.1016/j.apm.2015.03.058.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1113) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return