Volume 8 Issue 4
Oct.  2015
Turn off MathJax
Article Contents
Xin-e Tao, Hua Chen, Chong-yu Xu, Yu-kun Hou, Meng-xuan Jie. 2015: Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China. Water Science and Engineering, 8(4): 273-281. doi: 10.1016/j.wse.2015.11.002
Citation: Xin-e Tao, Hua Chen, Chong-yu Xu, Yu-kun Hou, Meng-xuan Jie. 2015: Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China. Water Science and Engineering, 8(4): 273-281. doi: 10.1016/j.wse.2015.11.002

Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China

doi: 10.1016/j.wse.2015.11.002
Funds:  This work was supported by the National Natural Science Foundation of China (Grants No. 51190094, 51339004, and 51279138).
More Information
  • Corresponding author: Hua Chen
  • Received Date: 2015-04-06
  • Rev Recd Date: 2015-09-09
  • Reference evapotranspiration (ET0) is often used to estimate actual evapotranspiration in water balance studies. In this study, the present and future spatial distributions and temporal trends of  in the Xiangjiang River Basin (XJRB) in China were analyzed.  during the period from 1961 to 2010 was calculated with historical meteorological data using the FAO Penman-Monteith (FAO P-M) method, while  during the period from 2011 to 2100 was downscaled from the Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under two emission scenarios, representative concentration pathway 4.5 and representative concentration pathway 8.5 (RCP45 and RCP85), using the statistical downscaling model (SDSM). The spatial distribution and temporal trend of  were interpreted with the inverse distance weighted (IDW) method and Mann-Kendall test method, respectively. Results show that: (1) the mean annual  of the XJRB is 1 006.3 mm during the period from 1961 to 2010, and the lowest and highest values are found in the northeast and northwest parts due to the high latitude and spatial distribution of climatic factors, respectively; (2) the SDSM performs well in simulating the present  and can be used to predict the future  in the XJRB; and (3) CMIP5 predicts upward trends in annual  under the RCP45 and RCP85 scenarios during the period from 2011 to 2100. Compared with the reference period (1961 to 1990),  increases by 9.8%, 12.6%, and 15.6% under the RCP45 scenario and 10.2%, 19.1%, and 27.3% under the RCP85 scenario during the periods from 2011 to 2040, from 2041 to 2070, and from 2071 to 2100, respectively. The predicted increasing  under the RCP85 scenario is greater than that under the RCP45 scenario during the period from 2011 to 2100.

     

  • loading
  • Alan, D.Z., Justin, S., Edwin, P.M., Bart, N., Eric, F.W., Dennis, P.L., 2003. Detection of intensification in global-and continental-scale hydrological cycles: Temporal scale of evaluation. Journal of Climate 16(3), 535–547. http://dx.doi.org/ 10.1175/1520-0442(2003)016<0535:DOIIGA>2.0.CO;2
    Allan, C., Xia J., Pahl-Wostl, C., 2013. Climate change and water security: challenges for adaptive water management. Current Opinion in Environmental Sustainability 5(6), 625–632. http://dx.doi.org/ 10.1016/j.cosust.2013.09.004
    Allen, R.G. Pereira, L.S., Raes. D., 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. In: FAO Irrigation and Drainage Paper No. 56. FAO, Rome.
    Allen, M.R., Ingram, W.J., 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903), 224–232. http://dx.doi.org/ 10.1038/nature01092.
    Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N.S., Singh, R., 2009. Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering 14(5), 508–515. http://dx.doi.org/ 10.1061/(ASCE)HE.1943–5584.0000006.
    Bates, B., Kundzewicz, Z.W., Wu, S., Palutikof, J., 2008. Climate Change and Water. Intergovernmental Panel on Climate Change (IPCC). Geneva.
    Burn, D.H., Elnur, M.A.H., 2002. Detection of hydrologic trends and variability. Journal of hydrology 255(1), 107–122. http://dx.doi.org/10.1016/S0022-1694(01)00514-5.
    Chu, J.T., Xia, J., Xu, C.Y., Singh, V.P., 2010. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theoretical and Applied Climatology 99(1-2), 149–161. http://dx.doi.org/10.1007/s00704-009-0129-6
    Durack, P.J., Wijffels, S.E., Matear, R.J., 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336 (6080), 455–458.
    Fisher, J.B., Whittaker, R.J., Malhi, Y., 2011. ET come home: potential evapotranspiration in geographical ecology. Global Ecology and Biogeography 20(1), 1–18. http://dx.doi.org/10.1111/j.1466-8238.2010.00578.x.
    Fowler, H.J., Wilby. R.L., 2007. Beyond the downscaling comparison study. International Journal of Climatology 27(12), 1543–1545. http://dx.doi.org/10.1002/joc.1616.
    Gao, G., Chen, D., Xu, C.Y., Simelton, E., 2007. Trend of estimated actual evapotranspiration over China during 1960–2002. Journal of Geophysical Research 112(D11). http://dx.doi.org/10.1029/2006JD008010.
    Gao, G., Xu, C.Y., Chen, D.L., Singh, V.P., 2012. Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China estimated by the complementary relationship and the Thornthwaite water balance model. Stochastic Environmental Research and Risk Assessment 26(5), 655–669. http://dx.doi.org/ 10.1007/s00477-011-0525-1.
    Hamed, K.H., Rao, A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204(1-4), 182–196. http://dx.doi.org/10.1016/S0022-1694(97)00125-X.
    IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press, New York.
    Kendall, M.G., 1975. Rank Correlation Methods. Charles Griffin, London.
    Li, Z., Zheng, F.L. Liu, W.Z., 2012. Spatiotemporal characteristics of reference evapotranspiration during 1961-2009 and its projected changes during 2011-2099 on the Loess Plateau of China. Agricultural and Forest Meteorology 154–155(6), 147–155. http://dx.doi.org/10.1016/j.agrformet.2011.10.019.
    Liu, W., Peng, S., Wang, W., 2012. Reference evapotranspiration changes in the Haihe River basin during past 50 years. Procedia Engineering 28(5), 258–263. http://dx.doi.org/10.1016/j.proeng.2012.01.716.
    Mann, H.B., 1945. Non-parametric tests against trend. Econometrica 13, 245–259.
    Mitchell, M., Curtis, A., Sharp, E., Mendham, E., 2012. Directions for social research to underpin improved groundwater management. Journal of Hydrology 448(15), 223–231. http://dx.doi.org/10.1016/j.jhydrol. 2012.04.056.
    Nash, J., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, part I: A discussion of principles. Journal of Hydrology 10(3), 282–290. http://dx.doi.org/10.1016/0022-1694(70)90255-6.
    Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Fang, J., 2010. The impacts of climate change on water resources and agriculture in China. Nature 467(7311), 43–51. http://dx.doi.org/10.1038/nature09364.
    Wang, W.G., Shao, Q.X., Peng, S.Z., Xing, W.Q., Yang, T., Luo, Y.F., Yong, B., Xu, J.Z., 2012. Reference evapotranspiration change and the causes across the Yellow River Basin during 1957–2008 and their spatial and seasonal differences. Water Resources Research 48(5), W05530.  http://dx.doi.org/10.1029/2011W R010724.
    Wang, W.G., Xing, W.Q., Shao, Q.X., Yu, Z.B., Peng, S.Z., Yang, T., Yong, B., Taylor, J., Singh, V.P., 2013. Changes in reference evapotranspiration across the Tibetan Plateau: Observations and future projections based on statistical downscaling. Journal of Geophysical Research: Atmospheres 118(10), 4049-4068. http://dx.doi.org/10.1002/jgrd.50393.
    Wang, Y., Jiang, T., Bothe, O., Fraedrich, K., 2007. Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theoretical and Applied Climatology 90(1), 13–23. http://dx.doi.org/ 10.1007/s00704-006-0276-y.
    Wentz, F.J., Ricciardulli, L., Hilburn, K., Mears, C., 2007. How much more rain will global warming bring? Science. 317(5835), 233–235.
    Wilby, R.L., Dawson, C.W., Barrow, E.M., 2002. SDSM: A decision support tool for the assessment of regional climate change impacts. Environmental Modelling and Software. 17(2), 145–157. http://dx.doi.org/10.1016/S13 64-8152(01)00060-3.
    Wilby, R.L., Dawson, C.W., 2007. SDSM 4.2: A Decision Support Tool for the Assessment of Regional Climate Change Impacts, User Manual. Department of Geography, Lancaster University, Lancaster.
    Xu, C.Y. Singh, V.P., 2005. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. Journal of Hydrology 308, 105–121. http://dx.doi.org/10.1016/j.jhydrol.2004.10.024.
    Xu, C.Y., Widén E., Halldin. S., 2005. Modelling hydrological consequences of climate change-progress and challenges. Advances in Atmospheric Sciences 22(6), 789–797. http://dx.doi.org/10.1007/BF02918679.
    Xu, C.Y., Gong, L.B., Jiang, T., Chen, D.L., Singh, V.P., 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology 327(1-2), 81–93. http://dx.doi.org/10.1016/j.jhydrol.2005.11.029.
    Ye, X.C., Li, X.H., Liu, J., Xu, C.Y., Zhang, Q., 2013. Variation of reference evapotranspiration and its contributing climatic factors in the Poyang Lake catchment, China. Hydrological Processes 28(25), 6151–6162. http://dx.doi.org/10.1002/hyp.10117.
    Zhang, Q., Xu, C.Y., Chen, X.H., 2011. Reference evapotranspiration changes in China: Natural processes or human influences? Theoretical and Applied Climatology 103(3-4), 479–488. http://dx.doi.org/ 10.1007/s00704 -010-0315-6.
    Zhang, Z., Chen, Y., Wang, P., Shuai, J.B., Tao, F.L., Shi, P.J., 2014. River discharge, land use change, and surface water quality in the Xiangjiang River, China. Hydrological Processes 28(13), 4130–4140. http://dx.doi.org/10.1002/hyp.9938.
    Zuo, D.P., Xu, Z.X., Yang, H., Liu, X.C., 2012. Spatiotemporal variations and abrupt changes of potential evapotranspiration and its sensitivity to key meteorological variables in the Wei River basin, China. Hydrological Processes 26(8), 1149–1160. http://dx.doi.org/10.1002/hyp.8206.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1848) PDF downloads(1957) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return