Citation: | Xin-e Tao, Hua Chen, Chong-yu Xu, Yu-kun Hou, Meng-xuan Jie. 2015: Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China. Water Science and Engineering, 8(4): 273-281. doi: 10.1016/j.wse.2015.11.002 |
Alan, D.Z., Justin, S., Edwin, P.M., Bart, N., Eric, F.W., Dennis, P.L., 2003. Detection of intensification in global-and continental-scale hydrological cycles: Temporal scale of evaluation. Journal of Climate 16(3), 535–547. http://dx.doi.org/ 10.1175/1520-0442(2003)016<0535:DOIIGA>2.0.CO;2
|
Allan, C., Xia J., Pahl-Wostl, C., 2013. Climate change and water security: challenges for adaptive water management. Current Opinion in Environmental Sustainability 5(6), 625–632. http://dx.doi.org/ 10.1016/j.cosust.2013.09.004
|
Allen, R.G. Pereira, L.S., Raes. D., 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. In: FAO Irrigation and Drainage Paper No. 56. FAO, Rome.
|
Allen, M.R., Ingram, W.J., 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903), 224–232. http://dx.doi.org/ 10.1038/nature01092.
|
Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N.S., Singh, R., 2009. Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering 14(5), 508–515. http://dx.doi.org/ 10.1061/(ASCE)HE.1943–5584.0000006.
|
Bates, B., Kundzewicz, Z.W., Wu, S., Palutikof, J., 2008. Climate Change and Water. Intergovernmental Panel on Climate Change (IPCC). Geneva.
|
Burn, D.H., Elnur, M.A.H., 2002. Detection of hydrologic trends and variability. Journal of hydrology 255(1), 107–122. http://dx.doi.org/10.1016/S0022-1694(01)00514-5.
|
Chu, J.T., Xia, J., Xu, C.Y., Singh, V.P., 2010. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theoretical and Applied Climatology 99(1-2), 149–161. http://dx.doi.org/10.1007/s00704-009-0129-6
|
Durack, P.J., Wijffels, S.E., Matear, R.J., 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336 (6080), 455–458.
|
Fisher, J.B., Whittaker, R.J., Malhi, Y., 2011. ET come home: potential evapotranspiration in geographical ecology. Global Ecology and Biogeography 20(1), 1–18. http://dx.doi.org/10.1111/j.1466-8238.2010.00578.x.
|
Fowler, H.J., Wilby. R.L., 2007. Beyond the downscaling comparison study. International Journal of Climatology 27(12), 1543–1545. http://dx.doi.org/10.1002/joc.1616.
|
Gao, G., Chen, D., Xu, C.Y., Simelton, E., 2007. Trend of estimated actual evapotranspiration over China during 1960–2002. Journal of Geophysical Research 112(D11). http://dx.doi.org/10.1029/2006JD008010.
|
Gao, G., Xu, C.Y., Chen, D.L., Singh, V.P., 2012. Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China estimated by the complementary relationship and the Thornthwaite water balance model. Stochastic Environmental Research and Risk Assessment 26(5), 655–669. http://dx.doi.org/ 10.1007/s00477-011-0525-1.
|
Hamed, K.H., Rao, A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204(1-4), 182–196. http://dx.doi.org/10.1016/S0022-1694(97)00125-X.
|
IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press, New York.
|
Kendall, M.G., 1975. Rank Correlation Methods. Charles Griffin, London.
|
Li, Z., Zheng, F.L. Liu, W.Z., 2012. Spatiotemporal characteristics of reference evapotranspiration during 1961-2009 and its projected changes during 2011-2099 on the Loess Plateau of China. Agricultural and Forest Meteorology 154–155(6), 147–155. http://dx.doi.org/10.1016/j.agrformet.2011.10.019.
|
Liu, W., Peng, S., Wang, W., 2012. Reference evapotranspiration changes in the Haihe River basin during past 50 years. Procedia Engineering 28(5), 258–263. http://dx.doi.org/10.1016/j.proeng.2012.01.716.
|
Mann, H.B., 1945. Non-parametric tests against trend. Econometrica 13, 245–259.
|
Mitchell, M., Curtis, A., Sharp, E., Mendham, E., 2012. Directions for social research to underpin improved groundwater management. Journal of Hydrology 448(15), 223–231. http://dx.doi.org/10.1016/j.jhydrol. 2012.04.056.
|
Nash, J., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, part I: A discussion of principles. Journal of Hydrology 10(3), 282–290. http://dx.doi.org/10.1016/0022-1694(70)90255-6.
|
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Fang, J., 2010. The impacts of climate change on water resources and agriculture in China. Nature 467(7311), 43–51. http://dx.doi.org/10.1038/nature09364.
|
Wang, W.G., Shao, Q.X., Peng, S.Z., Xing, W.Q., Yang, T., Luo, Y.F., Yong, B., Xu, J.Z., 2012. Reference evapotranspiration change and the causes across the Yellow River Basin during 1957–2008 and their spatial and seasonal differences. Water Resources Research 48(5), W05530. http://dx.doi.org/10.1029/2011W R010724.
|
Wang, W.G., Xing, W.Q., Shao, Q.X., Yu, Z.B., Peng, S.Z., Yang, T., Yong, B., Taylor, J., Singh, V.P., 2013. Changes in reference evapotranspiration across the Tibetan Plateau: Observations and future projections based on statistical downscaling. Journal of Geophysical Research: Atmospheres 118(10), 4049-4068. http://dx.doi.org/10.1002/jgrd.50393.
|
Wang, Y., Jiang, T., Bothe, O., Fraedrich, K., 2007. Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theoretical and Applied Climatology 90(1), 13–23. http://dx.doi.org/ 10.1007/s00704-006-0276-y.
|
Wentz, F.J., Ricciardulli, L., Hilburn, K., Mears, C., 2007. How much more rain will global warming bring? Science. 317(5835), 233–235.
|
Wilby, R.L., Dawson, C.W., Barrow, E.M., 2002. SDSM: A decision support tool for the assessment of regional climate change impacts. Environmental Modelling and Software. 17(2), 145–157. http://dx.doi.org/10.1016/S13 64-8152(01)00060-3.
|
Wilby, R.L., Dawson, C.W., 2007. SDSM 4.2: A Decision Support Tool for the Assessment of Regional Climate Change Impacts, User Manual. Department of Geography, Lancaster University, Lancaster.
|
Xu, C.Y. Singh, V.P., 2005. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. Journal of Hydrology 308, 105–121. http://dx.doi.org/10.1016/j.jhydrol.2004.10.024.
|
Xu, C.Y., Widén E., Halldin. S., 2005. Modelling hydrological consequences of climate change-progress and challenges. Advances in Atmospheric Sciences 22(6), 789–797. http://dx.doi.org/10.1007/BF02918679.
|
Xu, C.Y., Gong, L.B., Jiang, T., Chen, D.L., Singh, V.P., 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology 327(1-2), 81–93. http://dx.doi.org/10.1016/j.jhydrol.2005.11.029.
|
Ye, X.C., Li, X.H., Liu, J., Xu, C.Y., Zhang, Q., 2013. Variation of reference evapotranspiration and its contributing climatic factors in the Poyang Lake catchment, China. Hydrological Processes 28(25), 6151–6162. http://dx.doi.org/10.1002/hyp.10117.
|
Zhang, Q., Xu, C.Y., Chen, X.H., 2011. Reference evapotranspiration changes in China: Natural processes or human influences? Theoretical and Applied Climatology 103(3-4), 479–488. http://dx.doi.org/ 10.1007/s00704 -010-0315-6.
|
Zhang, Z., Chen, Y., Wang, P., Shuai, J.B., Tao, F.L., Shi, P.J., 2014. River discharge, land use change, and surface water quality in the Xiangjiang River, China. Hydrological Processes 28(13), 4130–4140. http://dx.doi.org/10.1002/hyp.9938.
|
Zuo, D.P., Xu, Z.X., Yang, H., Liu, X.C., 2012. Spatiotemporal variations and abrupt changes of potential evapotranspiration and its sensitivity to key meteorological variables in the Wei River basin, China. Hydrological Processes 26(8), 1149–1160. http://dx.doi.org/10.1002/hyp.8206.
|