Volume 8 Issue 4
Oct.  2015
Turn off MathJax
Article Contents
Ai-dong Ruan, Chen-xiao Liu. 2015: Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting. Water Science and Engineering, 8(4): 309-314. doi: 10.1016/j.wse.2015.11.003
Citation: Ai-dong Ruan, Chen-xiao Liu. 2015: Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting. Water Science and Engineering, 8(4): 309-314. doi: 10.1016/j.wse.2015.11.003

Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting

doi: 10.1016/j.wse.2015.11.003
Funds:  This work was supported by the National Natural Science Foundation of China (Grants No. 51378175 and 41323001), and the Research Project of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 20145028212).
More Information
  • Corresponding author: Ai-dong Ruan
  • Received Date: 2014-12-25
  • Rev Recd Date: 2015-10-12
  • Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) method was used to analyze the variation of the microbial community structure in the control and nicotine-contaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine-contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.

     

  • loading
  • Angino, E., 2012. Atomic Absorption Spectrometry in Geology. Elsevier, Amsterdam.
    Bai, J.H., Wang, Q.G., Gao, H.F., Xiao, R., Deng, W., Cui, B.S., 2010. Spatial and temporal distribution patterns of nitrogen in marsh soils from an inland alkaline wetland: A case study of Fulaowenpao wetland, China. Acta Ecologica Sinica 30(4), 210–215. http://dx.doi.org/10.1016/j.chnaes.2010.06.004.
    Bassam, B.J., Caetaneo-Anollés, G., 1991. Fast and sensitive sliver staining of DNA in polyacrylamide gels. Annual Biochemistry 196(1), 80–83. http://dx.doi.org/10.1016/0003-2697(91)90120-I.
    Benotti, M.J., Brownawell, B.J., 2007. Distributions of pharmaceuticals in an urban estuary during both dry- and wet-weather conditions. Environmental Science and Technology 41(16), 5795–5802. http://dx.doi.org/10.1021/es0629965.
    Blake, D. M., 1994. Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air. National Renewable Energy Laboratory, Golden.
    Boleda, M.R., Huerta-Fontela, M., Ventura, F., Galceran, M.T., 2011. Evaluation of the presence of drugs of abuse in tap waters. Chemosphere 84(1), 1601–1607. http://dx.doi.org/10.1016/j.chemosphere.2011.05.033.
    Brandsch, R., 2006. Microbiology and biochemistry of nicotine degradation. Applied Microbiology Biotechnology 69(5), 493–498. http://dx.doi.org/10.1007/s00253-005-0226-0.
    Civilini, M., Domenis, C., Sebastianutto, N., Bertoldi, M.D., 1997. Nicotine decontamination of tobacco agro-industrial waste and its degradation by micro-organisms. Waste Management & Research 15(4), 349–358. http://dx.doi.org/10.1177/0734242X970150 0403.
    Damiani, G., Amedeo, P., Bandi, C., Fani, R., Bellizzi, D., Sgaramella, V., 1996. Bacteria identification by PCR-based techniques. In: Adolph, K.W., eds., Microbial Genome Methods. CRC Press, Boca Raton, pp. 167–173.
    Devereux, R., Willis, S.G., 1995. Amplification of ribocomal RNA sequences. Molecular Microbial Ecology Manual 33, 277–287. http://dx.doi.org/10.1007/978-94-011-0351-0_19.
    Doolittle, D.J., Winegar, R., Lee, J.K., Caldwell, W.S., Wallace, A., Hayes, J., Bethizy, J.D., 1995. The genotoxic potential of nicotine and its major metabolites. Mutation Research. 344(3-4), 95–102. http://dx.doi.org/10.1016/0165-1218(95)00037-2.
    Duan, X.J., Min, H., 2004. Diversity of microbial genes in paddy soil stressed by Cadminum using DGGE. Environmental Science 25(5), 122–126 (in Chinese).
    Kaiser, J.P., Feng, Y., Bollag, J.M., 1996. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiological Reviews 60(3), 483–498.
    Luca, C., Daniele, A., Marisa, M., Carlo, C., Giuseppe, C., 2002. An application of PCR-DGGE analysis to profile the yeast population in raw milk. International Dairy Journal 12(5), 407–411. http://dx.doi.org/10.1016/S0958-6946(02)00023-7.
    Ma, Y., Wei, Y., Qiu, J.G., Wen, R.T., Hong, J., Liu, W.P., 2014. Isolation, transposon mutagenesis, and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. Applied Microbiology Biotechnology. 98(6), 2625–2636. http://dx.doi.org/10.1007/s00253-013-5207-0.
    Muyzer, G., Waal, E.C., Uitterlinden, A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59(3), 695–700.
    Nalin, R., Simonet, P., Vogel, T.M., Normand, P., 1999. Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Journal of System Bacteriology 49(1), 19–23. http://dx.doi.org/10.1099/00207713-49-1-19.
    Òvreas, L., Forney, L., Daàe, F. L. 1997. Distribution of bacterioplanton in meromictic Lake Saelevannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology 63(9), 3367–3373.
    Piotrowska-Cyplik, A., Olejnik, A., Cyplik, P., Dach, J., Czarnecki, Z., 2009. The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresource Technology 100(21), 5037–5044. http://dx.doi.org/10.1016/j.biortech.2009.05.053.
    Sciubba, L., Cavani, L., Marzadori, C., Ciavatta, C., 2013. Effect of biosolids from municipal sewage sludge composted with rice husk on soil functionality. Biology and Fertility of Soils 49(5), 597–608. http://dx.doi.org/10.1007/s00374-012-0748-4.
    Stuart, M., Lapworth, D., Crane, E., Hart, A., 2012. Review of risk from potential emerging contaminants in UK groundwater. Science of Total Environment 416(2), 1–21. http://dx.doi.org/10.1016/j.scitotenv.2011.11.072.
    Tang, H.Z., Wang, L.J., Wang, W.W., Yu, H., Zhang, K.Z., Yao, Y.X., Xu, P., 2013. Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas. Plos Genetics 9(10), e1003923. http://dx.doi.org/10.1371/journal.pgen.1003923.
    Valcárcel, Y., Alonso, S.G., Rodriguez-Gil, J.L., Gil, A., Catala, M., 2011. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere 84(10), 1336–1348. http://dx.doi.org/10.1016/j.chemosphere.2011.05.014.
    Wang, S.J., Wang Z.M., Chen, Q.F., Liu, G.Q., 2001. The countermeasure of the problems in fertilizer use and tobacco quality in tobacco growth area in Southern Anhui. Journal of Anhui Agricultural Sciences 29(3), 366–367 (in Chinese).
    Wang, S.N., Xu, P., Tang, H.Z., Meng, J., Liu, X.L., Ma, C.Q., 2005. “Green” Route to 6-Hydroxy-3-succinoyl-pyridine from (S)-Nicotine of Tobacco Waste by Whole Cells of a Pseudomonas sp. Environmental Science and Technology 39(17), 6877–6880. http://dx.doi.org/10.1021/es0500759.
    Wang, S.N., Huang, H.Y., Xie, K.B., Xu, P., 2012. Identification of nicotine biotransformation intermediates by Agrobacterium tumefaciens strain S33 suggests a novel nicotine degradation pathway. Applied Microbiology Biotechnology 95(6), 1567–1578. http://dx.doi.org/10.1007/s00253-012-4007-2.
    Yuan, Y.J., Lu, Z.X., Huang, L.J., Bie, X.M., Lü, F.X., Li, Y., 2006. Optimization of a medium for enhancing nicotine biodegradation by Ochrobactrum intermedium DN2. Journal of Applied Microbiology 101(3), 691–697. http://dx.doi.org/ 10.1111/j.1365-2672.2006.02929.x.
    Zheng, K.L., Yu, D.M., 2004. A summary of the comprehensive utilizations of discarded tobacco leaves. Journal of Chongqing University 27(3), 61–64 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1312) PDF downloads(1920) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return