Volume 8 Issue 4
Oct.  2015
Turn off MathJax
Article Contents
Steven Reinaldo Rusli, Doddi Yudianto, Jin-tao Liu. 2015: Effects of temporal variability on HBV model calibration. Water Science and Engineering, 8(4): 291-300. doi: 10.1016/j.wse.2015.12.002
Citation: Steven Reinaldo Rusli, Doddi Yudianto, Jin-tao Liu. 2015: Effects of temporal variability on HBV model calibration. Water Science and Engineering, 8(4): 291-300. doi: 10.1016/j.wse.2015.12.002

Effects of temporal variability on HBV model calibration

doi: 10.1016/j.wse.2015.12.002
Funds:  This work was supported by the National Natural Science Foundation of China (Grant No. 41271040), and the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 20145028012).
More Information
  • Corresponding author: Steven Reinaldo Rusli
  • Received Date: 2014-11-12
  • Rev Recd Date: 2015-09-22
  • This study aimed to investigate the effect of temporal variability on the optimization of the Hydrologiska Byråns Vattenbalansavedlning (HBV) model, as well as the calibration performance using manual optimization and average parameter values. By applying the HBV model to the Jiangwan Catchment, whose geological features include lots of cracks and gaps, simulations under various schemes were developed: short, medium-length, and long temporal calibrations. The results show that, with long temporal calibration, the objective function values of the Nash-Sutcliffe efficiency coefficient (NSE), relative error (RE), root mean square error (RMSE), and high flow ratio generally deliver a preferable simulation. Although NSE and RMSE are relatively stable with different temporal scales, significant improvements to RE and the high flow ratio are seen with longer temporal calibration. It is also noted that use of average parameter values does not lead to better simulation results compared with manual optimization. With medium-length temporal calibration, manual optimization delivers the best simulation results, with NSE, RE, RMSE, and the high flow ratio being 0.563 6, 0.122 3, 0.978 8, and 0.854 7, respectively; and calibration using average parameter values delivers NSE, RE, RMSE, and the high flow ratio of 0.481 1, 0.467 6, 1.021 0, and 2.784 0, respectively. Similar behavior is found with long temporal calibration, when NSE, RE, RMSE, and the high flow ratio using manual optimization are 0.525 3, −0.069 2, 1.058 0, and 0.980 0, respectively, as compared with 0.490 3, 0.224 8, 1.096 2, and 0.547 9, respectively, using average parameter values. This study shows that selection of longer periods of temporal calibration in hydrological analysis delivers better simulation in general for water balance analysis.

     

  • loading
  • Bari, M.A., Smettem, K.R.J., 2006. A conceptual model of daily water balance following partial clearing from forest to pasture. Hydrology and Earth Science System 10(3), 321–337. http://dx.doi.org/10.5194/hess-10-321-2006.
    Bergstrom, S., 1992. The HBV Model – Its Structure and Applications. Swedish Meteorological and Hydrological Institute, Norrkoping.
    Booij, M.J., 2005. Impact of climate change on river flooding assessed with different spatial model resolutions. Journal of Hydrology 303(1–4), 176–198. http://dx.doi.org/10.1016/j.jhydrol.2004.07.013.
    Bronster, A., Niehoff, D., Burger, G., 2002. Effects of climate and land use change on storm runoff generation: Present knowledge and modelling capabilities. Hydrological Processes 16, 509–529. http://dx.doi.org/10.1002/hyp.326.
    Dance, N., 2012. Kajian Perubahan Karakteristik Hdirologi Daerah Aliran Sungai Cikapundung Hulu Menggunakan Model HBV96. B. S. Dissertation. Parahyangan Catholic University, Bandung (in Indonesian).
    Das, T., Bárdossy, A., Zehe, E., He, Y., 2008. Comparison of conceptual model performance using different representations of spatial variability. Journal of Hydrology 356(1–2), 106–118. http://dx.doi.org/10.1016/j.jhydrol.2008.04.008.
    Elfert, S., Bormann, H., 2009. Simulated impact of past and possible future land use changes on the hydrological response of the northern German lowland, ‘Hunte’ Catchment. Journal of Hydrology 383(3), 245–255. http://dx.doi.org/10.1016/ j.jhydrol.2009.12.040.
    Gan, T.Y., Dlamini, E.M., Biftu, G.F., 1997. Effects of model complexity and structure, data quality and objective functions on hydrologic modelling. Journal of Hydrology 192(1–4), 81–103. http://dx.doi.org/10.1016/S0022-1694(96)03114-9.
    Guo, S.L., Wang, J.X., Xiong, L.H., Ying, A.W., Li, D.F., 2002. A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China. Journal of Hydrology 268(1–4), 1–15. http://dx.doi.org/10.1016/S0022-1694(02)00075-6.
    Liden, R., Harlin, J., 2000. Analysis of conceptual rainfall-runoff modelling performance in different climates. Journal of Hydrology 238(3–4), 231–247. http://dx.doi.org/10.1016/S0022-1694(00)00330-9.
    Lindstrom, L., Johansson, B., Persson, M., Gardelin, M., Bergstrom, S., 1997. Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology 201(1–4), 272–288. http://dx.doi.org/10.1016/S0022-1694(97)00041-3.
    Liu, J.T., Chen, X., Zhang, J.B., Flury, M., 2009. Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting. Wiley InterScience 23(9), 1337–1348. http://dx.doi.org/10.1002/hyp.7255.
    Liu, J.T., Chen, X., Wu, J.C., Zhang, X.N., Feng, D.Z., Xu, C.-Y., 2012. Grid parameterization of a conceptual, distributed hydrological model through integration of a sub-grid topographic index: Necessity and practicability. Hydrological Sciences Journal 57(2), 282–297. http://dx.doi.org/10.1080/02626667.2011.645823.
    Manfreda, S., Fiorentino, M., 2008. A stochastic approach for the description of the water balance dynamics in a river basin. Hydrology and Earth System Sciences 12, 1189–1200. http://dx.doi.org/10.5194/hessd-5-723-2008.
    Merz, R., Bloschl, G., 2004. Regionalization of catchment model parameters. Journal of Hydrology 287(1), 95–123. http://dx.doi.org/10.1016/j.jhydrol.2003.09.028.
    Sanata, W., 2013. Analisis Neraca Air Harian DAS Cikapundung Hulu Menggunakan Model HBV96. B. S. Dissertation. Parahyangan Catholic University, Bandung (in Indonesian).
    Singh, V.P., 1995. Computer Models of Watershed Hydrology. Water Resources Publications, Colorado.
    Troch, P., van Loon, E., Hilberts, A., 2002. Analytical solutions to a hillslope storage kinematic wave equation for sub-surface flow. Advances in Water Resources 25(6), 637–649. http://dx.doi.org/10.1016/S0309-1708(02)00017-9.
    Xiong, L.H., Guo, S.L., 1999. A two-parameter monthly water balance model and its application. Journal of Hydrology 216(1), 111–123. http://dx.doi.org/10.1016/S0022-1694(98)00297-2.
    Zhang, X., Lindstrom, G., 1997. Development of an automatic calibration scheme for the HBV hydrological model. Hydrological Processes 11(2), 1671–1782. http://dx.doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1671::AID-HYP497>3.0.CO;2-G.
    Zhao, R.J., Zuang, Y.L., Fang, L.R., Liu, X.R., Zhang, Q.S., 1980. The Xinanjiang Model. Proceedings of the Oxford Symposium, IAHS.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1586) PDF downloads(1867) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return