Volume 9 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
Yan Zhang, Ji-jian Lian, Fang Liu. 2016: Modal parameter identification for a roof overflow powerhouse under ambient excitation. Water Science and Engineering, 9(1): 67-80. doi: 10.1016/j.wse.2015.12.004
Citation: Yan Zhang, Ji-jian Lian, Fang Liu. 2016: Modal parameter identification for a roof overflow powerhouse under ambient excitation. Water Science and Engineering, 9(1): 67-80. doi: 10.1016/j.wse.2015.12.004

Modal parameter identification for a roof overflow powerhouse under ambient excitation

doi: 10.1016/j.wse.2015.12.004
Funds:  This work was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51321065) and the National Natural Science Foundation of China (Grants No. 51379140, 51209158, and 51379177).
  • Received Date: 2014-11-01
  • Rev Recd Date: 2015-08-30
  • Modal parameter identification is a core issue in health monitoring and damage detection for hydraulic structures. For a roof overflow hydropower station with a bulb tubular unit under ambient excitation, a complex unit-powerhouse-dam coupling vibration system increases the difficulties of modal parameter identification. In this study, in view of the difficulties of modal order determination and the noise jamming caused by ambient excitation, along with false mode identification and elimination problems, the ensemble empirical mode decomposition (EEMD) method was used to decrease noise, the singular entropy increment spectrum was used to determine system order, and multiple criteria were used to eliminate false modes. The eigensystem realization algorithm (ERA) and stochastic subspace identification (SSI) method were then used to identify modal parameters. The results show that the relative errors of frequencies in the first four modes were within 10% for the ERA method, while those of SSI were over 10% in the second and third modes. Therefore, the ERA method is more appropriate for identifying the structural modal parameters for this particular powerhouse layout.

     

  • loading
  • Anderson, B.D.O., Skelton, R.E., 1988. The generation of all q-Markov covers. IEEE Transactions on Circuits and Systems for Video Technology 35(4), 375–384.
    Brincker, R., Zhang, L., Andersen, P., 2000. Modal identi?cation from ambient responses using frequency domain decomposition. In: Proceedings of SPIE — The International Society for Optical Engineering, Society of Photo-optical Instrumentation Engineers, Bellingham, pp. 625–630.
    Brinker, R., Zhang, L., Andersen, P., 2001. Modal identification of output-only systems using frequency domain decomposition. Smart Materials and Structures 10(3), 441–445. http://dx.doi.org/10.1088/ 0964-1726/10/3/303.
    Cao, W., Zhang, Y.L., Ma, Z.Y., Chen, J., 2007. Vibration analysis of roof overflow powerhouse. Journal of Hydraulic Engineering 38(9), 1090–1095 (in Chinese).
    Chang, S.G., Yu, B., Vetterli, M., 2000. Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing 9(9), 1532–1546.
    Cheng, L., Zheng, D.J., 2014. The identification of a dam’s modal parameters under random support excitation based on the Hankel matrix joint approximate diagonalization technique. Mechanical Systems and Signal Processing 42(1–2), 42–57. http://dx.doi.org/10.1016/j.ymssp.2013.07.015.
    Darbre, G.R., De Smet, C.A.M., Kraemer, C., 2000. Natural frequencies measured from ambient vibration response of the arch dam of Mauvoisin. Earthquake Engineering and Structural Dynamics 29(5), 577–586. http://dx.doi.org/10.1002/(SICI)1096-9845(200005)29:5<577::AID-EQE924>3.0.CO;2-P.
    Döhler, M., Lam, X.B., Mevel, L., 2013. Uncertainty quantification for modal parameters from stochastic subspace identification on multi-setup measurements. Mechanical Systems and Signal Processing 36(2), 562–581. http://dx.doi.org/10.1016/j.ymssp.2012.11.011.
    Döhler, M., Mevel, L., 2013. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing 38(2), 346–366. http://dx.doi.org/10.1016/j.ymssp.2013.01.012.
    Fu, Z.F., 1990. Vibrational Modal Analysis and Parameter Identification. Machinery Industry Press, Beijing (in Chinese).
    Han, J.P., Li, D.W., Wang, F.X., 2010. Modal parameter identification based on Hilbert-Huang transform and stochastic subspace identification. Journal of Earthquake Engineering and Engineering Vibration 30(1), 53–59 (in Chinese).
    Hong, V.M., Masato, A., Yozo, F., Kiyoyuk, K., 2001. The eigensystem realization algorithm for ambient vibration measurement using laser Doppler vibrometers. In: Proceedings of the American Control Conference, IEEE, Arlington, pp. 435–440.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q.N., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition method and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of The Royal Society A: Mathematical Physical and Engineering Sciences 454, 903–995. http://dx.doi.org/10.1098/rspa.1998.0193.
    Ibrahim, S.R., Pappa, R.S., 1982. Large modal survey testing using the ibrahim time domain identification technique. Journal of Spacecraft and Rockets 19(5), 459–465. http://dx.doi.org/10.2514/3.62285.
    James, J.H., Carne, T.G., Lauffer, J.P., 1996. The natural excitation technique (NExT) for modal parameter extraction from operating structures. The International Journal of Analytical and Experimental Modal Analysis 10(4), 260–277.
    Ji, X.D., Qian, J.R., Xu, L.H., 2006. Experimental study of modal parameter identification in a simulated ambient-excited structure. Journal of Tsinghua University (Science and Technology) 46(6), 769–772.
    Jing, J., Meng, G., 2009. A novel method for multi-fault diagnosis of rotor system. Mechanism and Machine Theory 44(4), 697–709. http://dx.doi.org/10.1016/j.mechmachtheory.2008.05.002.
    Juang, J.N., 1994. Applied System Identification. Prentice Hall, Englewood Cliffs.
    Juang, J.N., Pappa, R., 1985. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of Guidance, Control, and Dynamics 8(5), 620–627. http://dx.doi.org/10.2514/3.20031.
    Juang, J.N., Cooper J.E., Wright, J.R., 1988. An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification. Control-Theory and Advanced Technology 4(1), 5–14.
    Kim, T., 1998. Frequency-domain Karhunen-Loeve method and its application to linear dynamic systems. AIAA Journal 36(11), 2117–2123. http://dx.doi.org/10.2514/2.315.
    Lee, J.W., Kim, J.D., Yun, C.B., Yi, J.H., Shim, J.M., 2002. Health-monitoring method for bridges under ordinary traffic loadings. Journal of Sound and Vibration 257(2), 247–264. http://dx.doi.org/10.1006/jsvi.2002.5056.
    Lew, J.S., Juang, J.N., Longman, R.W., 1993. Comparison of several system identification methods for flexible structures. Journal of Sound and Vibration 167(3), 461–480.
    Li, P., Wang S.Q., Li H.J., 2011. Noise handling of the eigensystem realization algorithm. Periodical of Ocean University of China 41(7–8), 176–182 (in Chinese).
    Li, S.H., Lian, J.J., 2009. Genetic algorithm for hydraulic power house modal parameters identification. Journal of Tianjin University 42(1), 11–16 (in Chinese).
    Lian, J.J., Li, H.K., Zhang, J.W., 2009. ERA modal identification method for hydraulic structures based on order determination and noise reduction of singular entropy. Science in China Series E-Technological Sciences 52(2), 400–412. http://dx.doi.org/10.1007/s11431-008-0200-z.
    Lian, J.J., Zhang, Y., Liu, F., YU, X.H., 2013. Vibration source characteristics of roof overflow hydropower station. Journal of Vibration and Shock 32(18), 8–14 (in Chinese).
    Moonen, M., De Moor, B., Vandenberghe, L., Vandewalle, J., 1989. On- and off-line identification of linear state-space models. International Journal of Control Automation and Systems 49(1), 219–232. http://dx.doi.org/10.1080/00207178908559631.
    Peeters, B., Roeck, G.D., Hermans L., Wauters T., Krmer C., De Smet C., 1998. Comparison of system identification methods using operational data of a bridge test. In: Proceedings of ISMA 23, the International Conference on Noise and Vibration Engineering, ISMA, Leuven, pp. 923–930.
    Peeters, B., Roeck, G.D., 2001. Stochastic system identification for operational modal analysis: a review. Journal of Dynamic Systems, Measurement, and Control 123(4), 659–667. http://dx.doi.org/10.1115/1.1410370.
    Petsounis, K.A., Fassois, S.D., 2001. Parametric time-domain methods for the identification of vibrating structures—A critical comparison and assessment. Mechanical Systems and Signal Processing 15(6), 1031–1060. http://dx.doi.org/10.1006/mssp.2001.1424.
    Qian, Z.W., Cheng, L., Li, Y.H., 2011. Noise reduction method based on singular value decomposition. Journal of Vibration, Measurement and Diagnosis 31(4), 459–463, 534 (in Chinese).
    Rato, R.T., Ortigueira, M.D. Batista, A.G., 2008. On the HHT, its problems, and some solutions. Mechanical Systems and Signal Processing 22(6), 1374–1394. http://dx.doi.org/10.1016/j.ymssp.2007.11.028.
    Schoukens, J., Dobrowiecki, T., Pintelon, R., 1998. Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions—a frequency domain approach. Automatic Control 43(2), 176–190. http://dx.doi.org/10.1109/9.661066.
    Sweeney, K.T., McLoone, S.F. Ward, T.E., 2013. The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique. IEEE Transactions on Biomedical Engineering 60(1), 97–105. http://dx.doi.org/10.1109/TBME.2012.2225427.
    Wu, Z.H., Huang., N.E., 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances Adaptive Data Analysis 1(1), 1–41. http://dx.doi.org/10.1142/S1793536909000047.
    Xie, Z.X., Huang, Z.W., 1981. Development of Roof Overflow Hydropower Station. Water Power 17, 24–32 (in Chinese).
    Yang, W.X., Peter, W.T., 2003. Development of an advanced noise reduction method for vibration analysis based on singular value decomposition. NDT and E International 36(6), 419–432. http://dx.doi.org/10.1016/S0963-8695(03)00044-6.
    Zhang, H.D., Zhou, Y., Lian, J.J., 2007. A method based on ARMA model for modal parameter identification of a power house. Journal of Vibration and Shock 26(5), 115–118,159 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1385) PDF downloads(1613) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return