Volume 9 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
Shun-qi Pan, Yang-ming Fan, Jia-ming Chen, Chia-chuen Kao. 2016: Optimization of multi-model ensemble forecasting of typhoon waves. Water Science and Engineering, 9(1): 52-57. doi: 10.1016/j.wse.2016.02.001
Citation: Shun-qi Pan, Yang-ming Fan, Jia-ming Chen, Chia-chuen Kao. 2016: Optimization of multi-model ensemble forecasting of typhoon waves. Water Science and Engineering, 9(1): 52-57. doi: 10.1016/j.wse.2016.02.001

Optimization of multi-model ensemble forecasting of typhoon waves

doi: 10.1016/j.wse.2016.02.001
Funds:  This work was supported by the European Commission within FP7-THEME 6 (Grant No. 244104), the Natural Environment Research
Council (NERC) of the UK (Grant No. NE/J005541/1), and the Ministry of Science and Technology (MOST) of Taiwan (Grant No. MOST 104-2221-E-006-183).
  • Received Date: 2015-06-01
  • Rev Recd Date: 2015-11-30
  • Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles). The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the Optimization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to implement and practical for real-time wave forecasting.

     

  • loading
  • Brenner, S., Gertman, I., Murashkovsky, A., 2007. Preoperational ocean forecasting in the southeastern Mediterranean Sea: Implementation and evaluation of the models and selection of the atmospheric forcing. J. Mar. Syst. 65(1e4), 268e287. http://dx.doi.org/10.1016/j.jmarsys.2005.11.018.
    Cavaleri, L., Sclavo, M., 2006. The calibration of wind and wave model data in the Mediterranean Sea. Coast. Eng. 53(7), 613e627. http://dx.doi.org/10.1016/j.coastaleng.2005.12.006.
    DeMaria, M., Knaff, J.A., Knabb, R., Lauer, C., Sampson, C.R., DeMaria, R.T., 2009. A new method for estimating tropical cyclone wind speed probabilities. Weather Forecast. 24(6), 1573e1591. http:// dx.doi.org/10.1175/2009WAF2222286.1.
    Dube, S.K., Sinha, P.C., Roy, G.D., 1985. The numerical simulation of storm surges along the Bangladesh coast. Dyn. Atmos. Oceans 9(2), 121e133. http://dx.doi.org/10.1016/0377-0265(85)90002-8.
    Gao, J., Luettich, R., Fleming, J., 2013. Development and Initial Evaluation of a Generalized Asymmetric Tropical Cyclone Vortex Model in ADCIRC. ADCIRC Users Group Meeting, U.S. Army Corps of Engineers, Vicksburg.
    Ginis, I., Sutyrin, G., 1995. Hurricane-generated depth-averaged currents and sea surface elevation. J. Phys. Oceanogr. 25(6), 1218e1242. http://dx.doi.org/10.1175/1520-0485(1995)025<1218:HGDACA>2.0.CO;2.
    Graham, H.E., Nunn, D.E., 1959. Meteorological Conditions Pertinent to Standard Project Hurricane. Atlantic and Gulf Coasts of United States. Weather Bureau, U.S. Department of Commerce, Washington, D.C.
    Holland, G.J., 1980. An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 108, 1212e1218.
    Jakobsen, F., Madsen, H., 2004. Comparison and further development of parametric tropical cyclone models for storm surge modelling. J.Wind Eng. Ind. Aerodyn. 92(5), 375e391. http://dx.doi.org/10.1016/j.jweia.2004.01.003.
    Jelesnianski, C.P., 1965. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Mon. Weather Rev. 93(6), 343e358. http://dx.doi.org/10.1175/1520-0493(1993)093<0343:ANCOS>2.3.CO;2.
    Jelesnianski, C.P., 1966. Numerical computations of storm surges without bottom stress. Mon. Weather Rev. 94(6), 379e394. http://dx.doi.org/10.1175/1520-0493(1966)094<0379:NCOSSW>2.3.CO;2.
    Knaff, J.A., Sampson, C.R., DeMaria, M., Marchok, T.P., Gross, J.M., McAdie, C.J., 2007. Statistical tropical cyclone wind radii prediction using climatology and persistence. Weather Forecast. 22(4), 781e791. http://dx.doi.org/10.1175/WAF1026.1.
    Lee, T.L., 2008. Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan. Eng. Appl. Artif. Intell. 21(1), 63e72. http://dx.doi.org/10.1016/j.engappai.2007.03.002.
    Lu¨ , X.C., Yuan, D.K., Ma, X.D., Tao, J.H., 2014. Wave characteristics analysis in Bohai Sea based on ECMWF wind field. Ocean Eng. 91, 159e171. http://dx.doi.org/10.1016/j.oceaneng.2014.09.010.
    Mattocks, C., Forbes, C., Ran, L., 2006. Design and Implementation of a Realtime Storm Surge and Flood Forecasting Capability for the State of North Carolina. University of North Carolina, Chapel Hill.
    Mattocks, C., Forbes, C., 2008. A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model. 25(3e4), 95e119. http://dx.doi.org/10.1016/j.ocemod.2008.06.008.
    Moeini, M.H., Etemad-Shahidi, A., Chegini, V., 2010. Wave modeling and extreme value analysis off the northern coast of the Persian Gulf. Appl. Ocean Res. 32(2), 209e218.
    Pande, M., Ho, T.C.E., Mikitiuk, M., Kopp, G.A., Surry, D., 2002. Implications of Typhoon York on the design wind speeds in Hong Kong. J. Wind Eng. Ind. Aerod. 90(12e15), 1569e1583. http://dx.doi.org/10.1016/S0167-6105(02)00271-4.
    Physical Oceanography Distributed Active Archive Center (PODAAC)/Jet Propulsion Laboratory (JPL)/National Aeronautics and Space Administration (NASA), 2010. Cross-Calibrated Multi-Platform Ocean Surface Wind Velocity, 1987-ongoing. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. http://rda.ucar.edu/datasets/ds744.9/
    [Retrieved Sep. 10, 2008].
    Powell, M.D., Vickery, P.J., Reinhold, T.A., 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279e283. http://dx.doi.org/10.1038/nature01481.
    Queensland Government, 2001. Queensland Climate Change and Community Vulnerability to Tropical Cyclones: Ocean Hazards Assessment e Stage 1. Department of Natural Resources and Mines, Brisbane.
    Russell, L.R., 1968. Probability Distribution for Texas Gulf Coast Hurricane Effects of Engineering Interest. Ph. D. Dissertation. Stanford University, Stanford.
    Sampson, C.R., Wittmann, P.A., Serra, E.A., Tolman, H.L., Schauer, J., Marchok, T., 2013. Evaluation of wave forecasts consistent with tropical cyclone warning center wind forecasts. Weather Forecast. 28(1), 287e294. http://dx.doi.org/10.1175/WAF-D-12-00060.1.
    Signell, R.P., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J.D., Pullen, J., Sclavo, M., 2005. Assessment of wind quality for oceanographic modelling in semi-enclosed basins. J. Mar. Syst. 53(1e4), 217e233. http://dx.doi.org/10.1016/j.jmarsys.2004.03.006.
    Ueno, T., 1981. Numerical computations of the storm surges in Tosa Bay. J. Oceanogr. Soc. Jpn. 37, 61e73.
    Wu, C.R., Chiang, T.L., 2007. Mesoscale eddies in the northern South China Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 54(14e15), 1575e1588. http://dx.doi.org/10.1016/j.dsr2.2007.05.008.
    Xie, L., Bao, S.W., Pietrafesa, L.J., Foley, K., Fuentes, M., 2006. A real-time hurricane surface wind forecasting model: Formulation and verification. Mon. Weather Rev. 134(5), 1355e1370. http://dx.doi.org/10.1175/MWR3126.1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1294) PDF downloads(1587) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return