Volume 9 Issue 3
Jul.  2016
Turn off MathJax
Article Contents
Long Xiang, Wen-wen Ling, Yong-shu Zhu, Li Chen, Zhong-bo Yu. 2016: Self-adaptive Green-Ampt infiltration parameters obtained from measured moisture processes. Water Science and Engineering, 9(3): 256-264. doi: 10.1016/j.wse.2016.05.001
Citation: Long Xiang, Wen-wen Ling, Yong-shu Zhu, Li Chen, Zhong-bo Yu. 2016: Self-adaptive Green-Ampt infiltration parameters obtained from measured moisture processes. Water Science and Engineering, 9(3): 256-264. doi: 10.1016/j.wse.2016.05.001

Self-adaptive Green-Ampt infiltration parameters obtained from measured moisture processes

doi: 10.1016/j.wse.2016.05.001
Funds:  This work was supported by the National Natural Science Foundation of China (Grants No. 51309078 and 51349015), the National Technology Support Program in the 12th Five-Year Plan of China (Grant No. 2012BAK10B04), Fundamental Research Funds for the Central Universities, the U.S. Army Corps of Engineers (USACE) under Contract W912HZ-08-2-0021, Maricopa County Flood Control District (ACRONYM) under Contract IGA FCD 2008A014, and the Program of Dual Innovative Talents Plan and Innovative Research Team in Jiangsu Province.
More Information
  • Corresponding author: Long Xiang
  • Received Date: 2015-10-12
  • Rev Recd Date: 2016-05-09
  • The Green-Ampt (G-A) infiltration model (i.e., the G-A model) is often used to characterize the infiltration process in hydrology. The parameters of the G-A model are critical in applications for the prediction of infiltration and associated rainfall-runoff processes. Previous approaches to determining the G-A parameters have depended on pedotransfer functions (PTFs) or estimates from experimental results, usually without providing optimum values. In this study, rainfall simulators with soil moisture measurements were used to generate rainfall in various experimental plots. Observed runoff data and soil moisture dynamic data were jointly used to yield the infiltration processes, and an improved self-adaptive method was used to optimize the G-A parameters for various types of soil under different rainfall conditions. The two G-A parameters, i.e., the effective hydraulic conductivity and the effective capillary drive at the wetting front, were determined simultaneously to describe the relationships between rainfall, runoff, and infiltration processes. Through a designed experiment, the method for determining the G-A parameters was proved to be reliable in reflecting the effects of pedologic background in G-A type infiltration cases and deriving the optimum G-A parameters. Unlike PTF methods, this approach estimates the G-A parameters directly from infiltration curves obtained from rainfall simulation experiments so that it can be used to determine site-specific parameters. This study provides a self-adaptive method of optimizing the G-A parameters through designed field experiments. The parameters derived from field-measured rainfall-infiltration processes are more reliable and applicable to hydrological models.

     

  • loading
  • Angermann, T., Wallender, W.W., Wilson, B.W., Werner, I., Hinton, D.E., Oliver, M.N., Zalom, F.G., Henderson, J.D., Oliveira, G.H., Deanovic, L.A., et al., 2002. Runoff from orchard floors—micro-plot field experiments and modeling. Journal of Hydrology 265(1–4), 178–194. http://dx.doi.org/10.1016/S0022-1694(02)00109-9.
    Athira, P., Sudheer, K.P., 2015. A method to reduce the computational requirement while assessing uncertainty of complex hydrological models. Stoch Environ Res Risk Assess 29(3), 847–859. http://dx.doi.org/10.1007/s00477-014-0958-4.
    Bhardwaj, A., Singh, R., 1992. Development of a portable rainfall simulator infiltrometer for infiltration, runoff and erosion studies. Agricultural Water Management 22(3), 235–248. http://dx.doi.org/10.1016/0378-3774(92)90028-U.
    Bouwer, H., 1966. Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resour. Res. 2(4), 729–738. http://dx.doi.org/10.1029/WR002i004p00729.
    Brakensiek, D.L., 1977. Estimating the effective capillary pressure in the Green and Ampt infiltration equation. Water Resour. Res. 13(3), 680–682. http://dx.doi.org/10.1029/WR013i003p00680.
    Brakensiek, D.L., Onstad, C.A., 1977. Parameter estimation of the Green and Ampt infiltration equation. Water Resour. Res. 13(6), 1009–1977. http://dx.doi.org/10.1029/WR013i006p01009.
    Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow, J. Irrig. Drainage Div., 72(IR2), 61-88,.
    Chu, S.T., 1978. Infiltration during unsteady rain. Water Resour. Res. 14(3), 461–466. http://dx.doi.org/10.1029/WR014i003p00461.
    Damodhara, R.M., Raghuwanshi, N.S., Singh, R., 2006. Development of a physically based 1D-infiltration model for irrigated soils. Agricultural Water Management 85(1–2), 165–174. http://dx.doi.org/10.1016/j.agwat.2006.04.009.
    Dun, S., Wu, J.Q., Elliot, W.J., Robichaud, P.R., Flanagan, D.C., Frankenberger, J.R., Brown, R.E., Xu, A.C., 2009. Adapting the Water Erosion Prediction Project (WEPP) model for forest applications. Journal of Hydrology 366(1–4), 46–54. http://dx.doi.org/10.1016/j.jhydrol.2008.12.019.
    Esteves, M., Faucher, X., Galle, S., Vauclin, M., 2000. Overland flow and infiltration modelling for small plots during unsteady rain: Numerical results versus observed values. Journal of Hydrology 228(3–4), 265–282 http://dx.doi.org/10.1016/S0022-1694(00)00155-4.
    Galbiati, G., Savi, F., 1995. Evaluation of the comparative influence of soil hydraulic properties and roughness on overland flow at the local scale. Journal of Agricultural Engineering Research 61(3), 183–190. http://dx.doi.org/10.1006/jaer.1995.1045.
    Govindaraju, R.S., Kavvas, M.L., Jones, S.E., Rolston, D.E., 1996. Use of Green-Ampt model for analyzing one-dimensional convective transport in unsaturated soils. Journal of Hydrology 178(1–4), 337–350 http://dx.doi.org/10.1016/0022-1694(95)02796-3.
    Gowdish, L., Munoz-Carpena, R., 2009. An improved Green-Ampt infiltration and redistribution method for uneven multistorm series. Vadose Zone Journal 8(2), 470–479. http://dx.doi.org/10.2136/vzj2008.0049.
    Green, W.H., Ampt, G.A., 1911. Studies on soil physics, part 1: The flow of air and water through soils. Journal of Agricultural Sciences 4(1), 1–24.
    Hristopulos, D., 2015. Covariance functions motivated by spatial random field models with local interactions. Stoch Environ. Res. Risk Assess. 29(3), 739–754. http://dx.doi.org/10.1007/s00477-014-0933-0.
    Lepore, B.J., Morgan, C.L.S., Norman, J.M., Molling, C.C., 2009. A mesopore and matrix infiltration model based on soil structure. Geoderma 152(3–4), 301–313. http://dx.doi.org/10.1016/j.geoderma.2009.06.016.
    Lee, T., Shin, J., Park, T., Lee, D., 2015. Basin rotation method for analyzing the directional influence of moving storms on basin response. Stoch Environ. Res. Risk. Assess. 29(1), 251–263. http://dx.doi.org/10.1007/s00477-014-0870-y.
    Ma, Y., Feng, S.Y., Su, D.Y., Gao, G.Y., Huo, Z.L., 2010. Modeling water infiltration in a large layered soil column with a modified Green-Ampt model and HYDRUS-1D. Computers and Electronics in Agriculture 71 (Supplement 1), S40–S47. http://dx.doi.org/10.1016/j.compag.2009.07.006.
    Marquardt, D.W., 1963. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441.
    Mein, R.G., Larson, C.L., 1973. Modeling infiltration during a steady rain. Water Resources Research 9(2), 384–394. http://dx.doi.org/10.1029/WR009i002p00384.
    Mohamoud, Y.M., 1991. Evaluating the Green and Ampt infiltration parameter values for tilled and crusted soils. Journal of Hydrology 123(1–2), 25–38. http://dx.doi.org/10.1016/0022-1694(91)90066-Q.
    More, J.J., Garbow, B.S., Hillstrom, K.E., 1980. User Guide for Minpack-1. Argonne National Laboratory, Argonne.
    Munn, J.R., Huntington, G.L., 1976. A portable rainfall simulator for erodibility and infiltration measurements in rugged terrain. Soil Sci. Soc. Am. J. 60, 622–624. http://dx.doi.org/10.2136/sssaj1976.03615995004000040046x.
    Mutchler, C.K., Moldenhauer, W.C., 1963. Applicator for laboratory rainfall simulator. Transactions of American Society of Agricultural Engineers 6, 220–222. http://dx.doi.org/10.13031/2013.40871.
    O’Brien, J.S., Jorgensen, G.R., Garcia, R., 2009. FLO-2D Software Version 2009. FLO-2D Software, Inc. Nutrioso, AZ.
    Prevedello, C.L., Loyola, J.M.T., Reichardt, K., Nielsen, D.R., 2009. New analytic solution related to the Richards, Philip, and Green-Ampt equations for infiltration. Vadose Zone Journal 8(1), 127–135. http://dx.doi.org/10.2136/vzj2008.0091.
    Rawls, W.J., Ahuja, L.R., Brakensiek, D.L., 1992. Estimating soil hydraulic properties from soils data. In: Proceedings of the International Workshop on Indirect Methods for Estimating Hydraulic Properties of Unsaturated Soils. University of California, Riverside, pp. 329–340.
    Rawls, W.J., Brakensiek, D.L., Miller, N., 1983. Green-Ampt infiltration parameters from soils data. Journal of Hydraulic Engineering 109(1), 62–69. http://dx.doi.org/10.1061/(ASCE)0733-9429(1983)109:1(62).
    Regalado, C.M., Ritter, A., Alvarez-Benedi, J., Munoz-Carpena, R., 2005. Simplified method to estimate the Green-Ampt wetting front suction and soil sorptivity with the Philip-Dunne falling-head permeameter. Vadose Zone Journal 4(2), 291–299.
    Reynolds, W.D., 2010. Measuring soil hydraulic properties using a cased borehole permeameter: Steady flow analyses. Vadose Zone Journal 9(3), 637–652. http://dx.doi.org/10.2136/vzj2009.0136.
    Risse, L.M., Nearing, M.A., Zhang, X.C., 1995. Variability in Green-Ampt effective hydraulic conductivity under fallow conditions. Journal of Hydrology 169(1–4), 1–24. http://dx.doi.org/10.1016/0022-1694(94)02676-3.
    Saxton, K.E., Rawls, W.J., 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal 70(5), 1569–1578. http://dx.doi.org/10.2136/sssaj2005.0117.
    Silburn, D.M., Connolly, R.D., 1995. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator data I: Infiltration modelling and parameter measurement. Journal of Hydrology 172(1–4), 87–104. http://dx.doi.org/10.1016/0022-1694(95)02740-G.
    Sivakumar, B., 2015. Networks: A generic theory for hydrology? Stoch. Environ. Res. Risk Assess. 29(3), 761–771. http://dx.doi.org/10.1007/s00477-014-0902-7.
    Suleiman, K.A., Swartzendruber, D., 2003. Measurement of sated hydraulic conductivity of surface soil in the field with a small-plot sprinkling infiltrometer. Journal of Hydrology 272(1–4), 203–212. http://dx.doi.org/10.1016/S0022-1694(02)00265-2.
    Taskinen, A., Sirviö, H., Bruen, M., 2008, Modelling effects of spatial variability of saturated hydraulic conductivity on autocorrelated overland flow data: Linear mixed model approach. Stoch. Environ. Res. Risk Assess. 22(1), 67–82. http://dx.doi.org/10.1007/s00477-006-0099-5.
    Valiantzas, J.D., 2010. New linearized two-parameter infiltration equation for direct determination of conductivity and sorptivity. Journal of Hydrology 384(1–2), 1–13. http://dx.doi.org/10.1016/j.jhydrol.2009.12.049.
    Van den Putte, A., Govers, G., Leys, A., Langhans, C., Clymans, W., Diels, J., 2013. Estimating the parameters of the Green–Ampt infiltration equation from rainfall simulation data: Why simpler is better. Journal of Hydrology 476, 332–344. http://dx.doi.org/10.1016/j.jhydrol.2012.10.051.
    van Genuchten, M. T. , 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892-898.
    Vázquez, E.V., Miranda, J.G.V., González, A.P., 2005. Characterizing anisotropy and heterogeneity of soil surface microtopography using fractal models. Ecological Modelling 182(3–4), 337–353 http://dx.doi.org/10.1016/j.ecolmodel.2004.04.012.
    Verbist, K., Torfs, S., Cornelis, W.M., Oyarzun, R., Soto, G., Gabriels, D., 2010. Comparison of single- and double-ring infiltrometer methods on stony soils. Vadose Zone Journal 9(2), 462–475. http://dx.doi.org/10.2136/vzj2009.0058.
    Wang, L.L., Li, Z.J., Bao, H.J., 2010. Development and comparison of Grid-based distributed hydrological models for excess-infiltration runoffs. Journal of Hohai University (Natural Sciences) 38(2), 123–128. http://dx.doi.org/10 .3876/j .issn .1000-1980 .2010 .02 .001 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1007) PDF downloads(1611) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return