Citation: | Long Xiang, Wen-wen Ling, Yong-shu Zhu, Li Chen, Zhong-bo Yu. 2016: Self-adaptive Green-Ampt infiltration parameters obtained from measured moisture processes. Water Science and Engineering, 9(3): 256-264. doi: 10.1016/j.wse.2016.05.001 |
Angermann, T., Wallender, W.W., Wilson, B.W., Werner, I., Hinton, D.E., Oliver, M.N., Zalom, F.G., Henderson, J.D., Oliveira, G.H., Deanovic, L.A., et al., 2002. Runoff from orchard floors—micro-plot field experiments and modeling. Journal of Hydrology 265(1–4), 178–194. http://dx.doi.org/10.1016/S0022-1694(02)00109-9.
|
Athira, P., Sudheer, K.P., 2015. A method to reduce the computational requirement while assessing uncertainty of complex hydrological models. Stoch Environ Res Risk Assess 29(3), 847–859. http://dx.doi.org/10.1007/s00477-014-0958-4.
|
Bhardwaj, A., Singh, R., 1992. Development of a portable rainfall simulator infiltrometer for infiltration, runoff and erosion studies. Agricultural Water Management 22(3), 235–248. http://dx.doi.org/10.1016/0378-3774(92)90028-U.
|
Bouwer, H., 1966. Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resour. Res. 2(4), 729–738. http://dx.doi.org/10.1029/WR002i004p00729.
|
Brakensiek, D.L., 1977. Estimating the effective capillary pressure in the Green and Ampt infiltration equation. Water Resour. Res. 13(3), 680–682. http://dx.doi.org/10.1029/WR013i003p00680.
|
Brakensiek, D.L., Onstad, C.A., 1977. Parameter estimation of the Green and Ampt infiltration equation. Water Resour. Res. 13(6), 1009–1977. http://dx.doi.org/10.1029/WR013i006p01009.
|
Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow, J. Irrig. Drainage Div., 72(IR2), 61-88,.
|
Chu, S.T., 1978. Infiltration during unsteady rain. Water Resour. Res. 14(3), 461–466. http://dx.doi.org/10.1029/WR014i003p00461.
|
Damodhara, R.M., Raghuwanshi, N.S., Singh, R., 2006. Development of a physically based 1D-infiltration model for irrigated soils. Agricultural Water Management 85(1–2), 165–174. http://dx.doi.org/10.1016/j.agwat.2006.04.009.
|
Dun, S., Wu, J.Q., Elliot, W.J., Robichaud, P.R., Flanagan, D.C., Frankenberger, J.R., Brown, R.E., Xu, A.C., 2009. Adapting the Water Erosion Prediction Project (WEPP) model for forest applications. Journal of Hydrology 366(1–4), 46–54. http://dx.doi.org/10.1016/j.jhydrol.2008.12.019.
|
Esteves, M., Faucher, X., Galle, S., Vauclin, M., 2000. Overland flow and infiltration modelling for small plots during unsteady rain: Numerical results versus observed values. Journal of Hydrology 228(3–4), 265–282 http://dx.doi.org/10.1016/S0022-1694(00)00155-4.
|
Galbiati, G., Savi, F., 1995. Evaluation of the comparative influence of soil hydraulic properties and roughness on overland flow at the local scale. Journal of Agricultural Engineering Research 61(3), 183–190. http://dx.doi.org/10.1006/jaer.1995.1045.
|
Govindaraju, R.S., Kavvas, M.L., Jones, S.E., Rolston, D.E., 1996. Use of Green-Ampt model for analyzing one-dimensional convective transport in unsaturated soils. Journal of Hydrology 178(1–4), 337–350 http://dx.doi.org/10.1016/0022-1694(95)02796-3.
|
Gowdish, L., Munoz-Carpena, R., 2009. An improved Green-Ampt infiltration and redistribution method for uneven multistorm series. Vadose Zone Journal 8(2), 470–479. http://dx.doi.org/10.2136/vzj2008.0049.
|
Green, W.H., Ampt, G.A., 1911. Studies on soil physics, part 1: The flow of air and water through soils. Journal of Agricultural Sciences 4(1), 1–24.
|
Hristopulos, D., 2015. Covariance functions motivated by spatial random field models with local interactions. Stoch Environ. Res. Risk Assess. 29(3), 739–754. http://dx.doi.org/10.1007/s00477-014-0933-0.
|
Lepore, B.J., Morgan, C.L.S., Norman, J.M., Molling, C.C., 2009. A mesopore and matrix infiltration model based on soil structure. Geoderma 152(3–4), 301–313. http://dx.doi.org/10.1016/j.geoderma.2009.06.016.
|
Lee, T., Shin, J., Park, T., Lee, D., 2015. Basin rotation method for analyzing the directional influence of moving storms on basin response. Stoch Environ. Res. Risk. Assess. 29(1), 251–263. http://dx.doi.org/10.1007/s00477-014-0870-y.
|
Ma, Y., Feng, S.Y., Su, D.Y., Gao, G.Y., Huo, Z.L., 2010. Modeling water infiltration in a large layered soil column with a modified Green-Ampt model and HYDRUS-1D. Computers and Electronics in Agriculture 71 (Supplement 1), S40–S47. http://dx.doi.org/10.1016/j.compag.2009.07.006.
|
Marquardt, D.W., 1963. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441.
|
Mein, R.G., Larson, C.L., 1973. Modeling infiltration during a steady rain. Water Resources Research 9(2), 384–394. http://dx.doi.org/10.1029/WR009i002p00384.
|
Mohamoud, Y.M., 1991. Evaluating the Green and Ampt infiltration parameter values for tilled and crusted soils. Journal of Hydrology 123(1–2), 25–38. http://dx.doi.org/10.1016/0022-1694(91)90066-Q.
|
More, J.J., Garbow, B.S., Hillstrom, K.E., 1980. User Guide for Minpack-1. Argonne National Laboratory, Argonne.
|
Munn, J.R., Huntington, G.L., 1976. A portable rainfall simulator for erodibility and infiltration measurements in rugged terrain. Soil Sci. Soc. Am. J. 60, 622–624. http://dx.doi.org/10.2136/sssaj1976.03615995004000040046x.
|
Mutchler, C.K., Moldenhauer, W.C., 1963. Applicator for laboratory rainfall simulator. Transactions of American Society of Agricultural Engineers 6, 220–222. http://dx.doi.org/10.13031/2013.40871.
|
O’Brien, J.S., Jorgensen, G.R., Garcia, R., 2009. FLO-2D Software Version 2009. FLO-2D Software, Inc. Nutrioso, AZ.
|
Prevedello, C.L., Loyola, J.M.T., Reichardt, K., Nielsen, D.R., 2009. New analytic solution related to the Richards, Philip, and Green-Ampt equations for infiltration. Vadose Zone Journal 8(1), 127–135. http://dx.doi.org/10.2136/vzj2008.0091.
|
Rawls, W.J., Ahuja, L.R., Brakensiek, D.L., 1992. Estimating soil hydraulic properties from soils data. In: Proceedings of the International Workshop on Indirect Methods for Estimating Hydraulic Properties of Unsaturated Soils. University of California, Riverside, pp. 329–340.
|
Rawls, W.J., Brakensiek, D.L., Miller, N., 1983. Green-Ampt infiltration parameters from soils data. Journal of Hydraulic Engineering 109(1), 62–69. http://dx.doi.org/10.1061/(ASCE)0733-9429(1983)109:1(62).
|
Regalado, C.M., Ritter, A., Alvarez-Benedi, J., Munoz-Carpena, R., 2005. Simplified method to estimate the Green-Ampt wetting front suction and soil sorptivity with the Philip-Dunne falling-head permeameter. Vadose Zone Journal 4(2), 291–299.
|
Reynolds, W.D., 2010. Measuring soil hydraulic properties using a cased borehole permeameter: Steady flow analyses. Vadose Zone Journal 9(3), 637–652. http://dx.doi.org/10.2136/vzj2009.0136.
|
Risse, L.M., Nearing, M.A., Zhang, X.C., 1995. Variability in Green-Ampt effective hydraulic conductivity under fallow conditions. Journal of Hydrology 169(1–4), 1–24. http://dx.doi.org/10.1016/0022-1694(94)02676-3.
|
Saxton, K.E., Rawls, W.J., 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal 70(5), 1569–1578. http://dx.doi.org/10.2136/sssaj2005.0117.
|
Silburn, D.M., Connolly, R.D., 1995. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator data I: Infiltration modelling and parameter measurement. Journal of Hydrology 172(1–4), 87–104. http://dx.doi.org/10.1016/0022-1694(95)02740-G.
|
Sivakumar, B., 2015. Networks: A generic theory for hydrology? Stoch. Environ. Res. Risk Assess. 29(3), 761–771. http://dx.doi.org/10.1007/s00477-014-0902-7.
|
Suleiman, K.A., Swartzendruber, D., 2003. Measurement of sated hydraulic conductivity of surface soil in the field with a small-plot sprinkling infiltrometer. Journal of Hydrology 272(1–4), 203–212. http://dx.doi.org/10.1016/S0022-1694(02)00265-2.
|
Taskinen, A., Sirviö, H., Bruen, M., 2008, Modelling effects of spatial variability of saturated hydraulic conductivity on autocorrelated overland flow data: Linear mixed model approach. Stoch. Environ. Res. Risk Assess. 22(1), 67–82. http://dx.doi.org/10.1007/s00477-006-0099-5.
|
Valiantzas, J.D., 2010. New linearized two-parameter infiltration equation for direct determination of conductivity and sorptivity. Journal of Hydrology 384(1–2), 1–13. http://dx.doi.org/10.1016/j.jhydrol.2009.12.049.
|
Van den Putte, A., Govers, G., Leys, A., Langhans, C., Clymans, W., Diels, J., 2013. Estimating the parameters of the Green–Ampt infiltration equation from rainfall simulation data: Why simpler is better. Journal of Hydrology 476, 332–344. http://dx.doi.org/10.1016/j.jhydrol.2012.10.051.
|
van Genuchten, M. T. , 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892-898.
|
Vázquez, E.V., Miranda, J.G.V., González, A.P., 2005. Characterizing anisotropy and heterogeneity of soil surface microtopography using fractal models. Ecological Modelling 182(3–4), 337–353 http://dx.doi.org/10.1016/j.ecolmodel.2004.04.012.
|
Verbist, K., Torfs, S., Cornelis, W.M., Oyarzun, R., Soto, G., Gabriels, D., 2010. Comparison of single- and double-ring infiltrometer methods on stony soils. Vadose Zone Journal 9(2), 462–475. http://dx.doi.org/10.2136/vzj2009.0058.
|
Wang, L.L., Li, Z.J., Bao, H.J., 2010. Development and comparison of Grid-based distributed hydrological models for excess-infiltration runoffs. Journal of Hohai University (Natural Sciences) 38(2), 123–128. http://dx.doi.org/10 .3876/j .issn .1000-1980 .2010 .02 .001 (in Chinese).
|