Citation: | Jing-sen Cai, E-chuan Yan, Tian-chyi Jim Yeh, Yuan-yuan Zha. 2016: Effects of heterogeneity distribution on hillslope stability during rainfalls. Water Science and Engineering, 9(2): 134-144. doi: 10.1016/j.wse.2016.06.004 |
Bouwer, H., 1978. Groundwater Hydrology. McGraw-Hill College, New York.
|
Carsel, R.F., Parrish, R.S., 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24(5), 755–769. http://dx.doi.org/10.1029/WR024i005p00755.
|
Cho, S.E., 2012. Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation. Eng. Geol. 133–134, 30–39. http://dx.doi.org/10.1016/j.enggeo.2012.02.013.
|
Cho, S.E., 2014. Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability. Eng. Geol. 171, 11–20. http://dx.doi.org/10.1016/j.enggeo.2013.12.015.
|
Fenton, G.A., Griffiths, D.V., 1993. Statistics of block conductivity through a simple bounded stochastic medium. Water Resour. Res. 29(6), 1825–1830. http://dx.doi.org/10.1029/93WR00412.
|
Gelhar, L.W., 1993. Stochastic Subsurface Hydrology. Prentice-Hall, Englewood Cliffs.
|
Griffiths, D.V, Fenton, G.A., 1993. Seepage beneath water retaining structures founded on spatially random soil. Géotechnique 43(4), 577–587. http://dx.doi.org/10.1680/geot.1993.43.4.577.
|
Griffiths, D.V., Fenton, G.A., 2004. Probabilistic slope stability analysis by finite elements. J. Geotech. Geoenvironmental Eng. 130(5), 507–518. http://dx.doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507).
|
Gui, S., Zhang, R., Turner, J.P., Xue, X., 2000. Probabilistic slope stability analysis with stochastic soil hydraulic conductivity. J. Geotech. Geoenvironmental Eng.126(1), 1–9. http://dx.dSoi.org/10.1061/(ASCE)1090-0241(2000)126:1(1).
|
Gutjahr, A.L., 1989. Fast Fourier Transforms for Random Field Generation: Project Report for Los Alamos Grant to New Mexico Tech. New Mexico Institute of Mining and Technology, Socorro.
|
Hughson, D.L., Yeh, T.C.J., 2000. An inverse model for three-dimensional flow in variably saturated porous media. Water Resour. Res. 36(4), 829–839. http://dx.doi.org/10.1029/2000WR900001.
|
Khaleel, R., Freeman, E.J., 1995. Variability and Scaling of Hydraulic Properties for 200 Area Soils, Hanford Site. U.S. Department of Energy Assistant Secretary for Environmental Management, Washington.
|
Li, B., Yeh, T.C.J., 1998. Sensitivity and moment analyses of head in variably saturated regimes. Adv. Water Resour. 21(6), 477–485. http://dx.doi.org/10.1016/S0309-1708(97)00011-0.
|
Li, B., Yeh, T.C.J., 1999. Cokriging estimation of the conductivity field under variably saturated flow conditions. Water Resour. Res. 35(12), 3663–3674. http://dx.doi.org/10.1029/1999WR900268.
|
Mao, D., Wan, L., Yeh, T.C.J., Lee, C., Hsu, K., Wen, J., Lu, W., 2011. A revisit of drawdown behavior during pumping in unconfined aquifers. Water Resour. Res. 47(5). http://dx.doi.org/10.1029/2010WR009326.
|
Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522. http://dx.doi.org/10.1029/WR012i003p00513.
|
Nielsen, D.R., Biggar, J.W., Erh, K.T., 1973. Spatial variability of field-measured soil-water properties. Hilgardia 42(7), 215–259. http://dx.doi.org/10.3733/hilg.v42n07p215.
|
Rawls, W.J., Brakensiek, D.L., Saxtonn, K.E., 1982. Estimation of soil water properties. Transactions of the ASAE 25(5), 1316–1320. http://dx.doi.org/10.13031/2013.33720.
|
Rulon, J.J., Freeze, R.A., 1985. Multiple seepage faces on layered slopes and their implications for slope-stability analysis. Can. Geotech. J. 22(3), 347–356. http://dx.doi.org/10.1139/t85-047.
|
Russo, D., Bouton, M., 1992. Statistical analysis of spatial variability in unsaturated flow parameters. Water Resour. Res. 28(7), 1911–1925. http://dx.doi.org/10.1029/92WR00669.
|
Russo, D., 1997. On the estimation of parameters of log-unsaturated conductivity covariance from solute transport data. Adv. Water Resour. 20(4), 191–205. http://dx.doi.org/10.1016/S0309-1708(96)00019-X.
|
Santoso, A.M., Phoon, K.K., Quek, S.T., 2011. Effects of soil spatial variability on rainfall-induced landslides. Computers and Structures 89(11), 893–900. http://dx.doi.org/10.1016/j.compstruc.2011.02.016.
|
Srivastava, A., Babu, G.L.S., Haldar, S., 2010. Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis. Eng. Geol. 110(3), 93–101. http://dx.doi.org/10.1016/j.enggeo.2009.11.006.
|
Sun, R., Yeh, T.C.J, Mao, D., Jin, M., Lu, W., Hao, Y., 2013. A temporal sampling strategy for hydraulic tomography analysis. Water Resour. Res. 49(7), 3881–3896. http://dx.doi.org/10.1002/wrcr.20337.
|
Sykes, J.F., Wilson, J.L., Andrews, R.W., 1985. Sensitivity analysis for steady state groundwater flow using adjoint operators. Water Resour. Res. 21(3), 359–371. http://dx.doi.org/10.1029/WR021i003p00359.
|
Ünlü, K., Nielsen, D.R., Biggar, J.W., Morkoc, F., 1990. Statistical parameters characterizing the spatial variability of selected soil hydraulic properties. Soil Sci. Soc. Am. J. 54(6), 1537–1547. http://dx.doi.org/10.2136/sssaj1990.03615995005400060005x.
|
van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892-898. http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x.
|
White, I., Sully, M.J., 1992. On the variability and use of the hydraulic conductivity alpha parameter in stochastic treatments of unsaturated flow. Water Resour. Res. 28(1), 209–213. http://dx.doi.org/10.1029/91WR02198.
|
Wu, C., Yeh, T.C.J., Zhu, J., Lee, T.H., Hsu, N., Chen, C., Sancho, A.F., 2005. Traditional analysis of aquifer tests: Comparing apples to oranges? Water Resour. Res. 41(9). http://dx.doi.org/10.1029/2004WR003717.
|
Yeh, T.C.J., 1992. Stochastic modelling of groundwater flow and solute transport in aquifers. Hydrol. Process. 6(4), 369–395. http://dx.doi.org/10.1002/hyp.3360060402.
|
Yeh, T.C.J., Srivastava, R., Guzman, A., Harter, T., 1993. A numerical model for water flow and chemical transport in variably saturated porous media. Groundwater 31(4), 634–644. http://dx.doi.org/10.1111/j.1745-6584.1993.tb00597.x.
|
Yeh, T.C.J., Mao, D., Zha, Y., Hsu, K., Lee, C., Wen, J., Lu, W., Yang, J., 2014. Why hydraulic tomography works? Groundwater 52(2), 168–172. http://dx.doi.org/10.1111/gwat.12129.
|
Yeh, T.C.J., Khaleel, R., Carroll, K.C., 2015. Flow Through Heterogeneous Geological Media. Cambridge University Press.
|
Zhang, J., Yeh, T.C.J., 1997. An iterative geostatistical inverse method for steady flow in the vadose zone. Water Resour. Res. 33(1), 63–71. http://dx.doi.org/10.1029/96WR02589.
|
Zhang, L.L., Fredlund, D.G., Zhang, L.M., Tang, W.H., 2004. Numerical study of soil conditions under which can be maintained. Can. Geotech. J. 41(4), 569–582. http://dx.doi.org/10.1139/t04-006.
|
Zhu, H., Zhang, L.M., Zhang, L.L., Zhou, C.B., 2013. Two-dimensional probabilistic infiltration analysis with a spatially varying permeability function. Comput. Geotech. 48, 249–259. http://dx.doi.org/10.1016/j.compgeo.2012.07.010.
|