Volume 9 Issue 3
Jul.  2016
Turn off MathJax
Article Contents
Sheng-tang Zhang, Yin Liu, Miao-miao Li, Bo Liang. 2016: Distributed hydrological models for addressing effects of spatial variability of roughness on overland flow. Water Science and Engineering, 9(3): 249-255. doi: 10.1016/j.wse.2016.07.001
Citation: Sheng-tang Zhang, Yin Liu, Miao-miao Li, Bo Liang. 2016: Distributed hydrological models for addressing effects of spatial variability of roughness on overland flow. Water Science and Engineering, 9(3): 249-255. doi: 10.1016/j.wse.2016.07.001

Distributed hydrological models for addressing effects of spatial variability of roughness on overland flow

doi: 10.1016/j.wse.2016.07.001
Funds:  This work was supported by the National Natural Science Foundation of China (Grants No. 41471025 and 40971021) and the Natural Science Foundation of Shandong Province (Grant No. ZR2014DM004).
More Information
  • Corresponding author: Sheng-tang Zhang
  • Received Date: 2015-05-10
  • Rev Recd Date: 2015-12-02
  • In this study, we investigated the origin of the overland flow roughness problem and divided the current overland flow roughness research into three types, as follows: the first type of research takes into account the effects of roughness on the volume and velocity of surface runoff, flood peaks, and the scouring capability of flows, but has not addressed the spatial variability of roughness in detail; the second type of research considers that surface roughness varies spatially with different land usage types, land-cover conditions, and different tillage forms, but lacks a quantitative study of the spatial variability; and the third type of research simply deals with the spatial variability of roughness in each grid cell or land type. We present three shortcomings of the current overland flow roughness research, including (1) the neglect of roughness in distributed hydrological models when simulating the overland flow direction and distribution, (2) the lack of consideration of spatial variability of roughness in hydrological models, and (3) the failure to distinguish the roughness formulas in different overland flow regimes. To solve these problems, distributed hydrological model research should focus on four aspects in regard to overland flow: velocity field observations, flow regime mechanisms, a basic roughness theory, and scale problems.

     

  • loading
  • Barros, A.P., Colello, J.D., 2001. Surface roughness for shallow overland flow on crushed stone surface. J. Hydraul. Eng. 127(1), 38–52. http://dx.doi.org/10.1061/(ASCE)0733-9429(2001)127:1(38).
    Bergstrom, S., Graham, L.P., 1998. On the scale problem in hydrological modelling. J. Hydrol. 211(1), 253–265. http://dx.doi.org/ 10.1016/S0022-1694(98)00248-0.
    Candela, A., Noto, L.V., Aronica, G., 2006. Influence of surface roughness in hydrological response of semiarid catchments. J. Hydrol. 313(3–4), 119–131. http://dx.doi.org/10.1016/j.jhydrol.2005.01.023.
    Cea, L., Legout, C., Darboux, F., Esteves, M., Nord, G., 2014. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data. J. Hydrol. 513, 142–153. http://dx.doi.org/10.1016/j.jhydrol.2014.03.052.
    Chen, L., Li, Z.B., Li, P., Xu, G.C., Song, W., 2012. Hydraulic characteristics and flow energy consumption of accelerated erosion on steep slope woodland. Bulletin of Soil and Water Conservation 32(4), 5–9 (in Chinese).
    Darboux, F., Davy, P., Gascuel-Odoux, C., Huang, C., 2002. Evolution of soil surface roughness and flowpath connectivity in overland flow experiments. CATENA 46(2–3), 125–139. http://dx.doi.org/10.1016/S0341-8162(01)00162-X.
    Deng, P., Li, Z.J., 2013. Comparison of three hydrological models in flood simulation for Xixian Basin of Huaihe River. Journal of Hohai University (Natural Sciences) 41(5), 377–382 (in Chinese). http://dx.doi.org/10.3876/j.issn.1000-1980.2013.05.001.
    Dunkerley, D., 2002. Volumetric displacement of flow depth by obstacles, and the determination of friction factors in shallow overland flows. Earth Surface Processes and Landforms 27(2), 165–175. http://dx.doi.org/10.1002/esp.309.
    Engman, E.T., 1986. Roughness coefficients for routing surface runoff. J. Irrig. Drain. Eng. 112(1), 39–53. http://dx.doi.org/ 10.1061/(ASCE)0733-9437(1986)112:1(39).
    Haque, M.A., 2002. Study of surface runoff using physical models. Environ. Geol. 41(7), 797–805. http://dx.doi.org/ 10.1007/s00254-001-0455-1.
    Helmers, M.J., Eisenhauer, D.E., 2006. Overland flow modeling in a vegetative filter considering non-planar topography and spatial variability of soil hydraulic properties and vegetation density. J. Hydrol. 328(1–2), 267–282. http://dx.doi.org/ 10.1016/j.jhydrol.2005.12.026.
    Jin, C.X., Romkens, M.J.M., Griffioen, F., 2000. Estimating manning's roughness coefficient for shallow overland flow in non-submerged vegetative filter strips. Transactions of the ASAE 43(6), 1459–1466. http://dx.doi.org/10.13031/2013.3044.
    Laloy, E., Bielders, C.L., 2008. Plot scale continuous modelling of runoff in a maize cropping system with dynamic soil surface properties. J. Hydrol. 349(3–4), 455–469. http://dx.doi.org/10.1016/j.jhydrol.2007.11.033.
    Lane, L.J., Woolhiser, D.A., 1977. Simplifications of watershed geometry affecting simulation of surface runoff. J. Hydrol. 35(1–2), 173–190. http://dx.doi.org/10.1016/0022-1694(77)90085-3.
    Li, G., Wang, X., Zhao, X., Huang, E., Liu, X., Cao, S., 2013. Flexible and rigid vegetation in overland flow resistance. Transactions of the ASABE 56(3), 919-926. http://dx.doi.org/10.13031/trans.56.9559.
    Liu, J.T., Chen, X., Zhang, J.B., Flury, M., 2009. Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting. Hydrol. Process. 23(9), 1337–1348. http://dx.doi.org/10.1016/j.iswcr.2015.03.004.
    Liu, J.T., Chen, X., Zhang, X.N., Hoagland, K.D., 2012. Grid digital elevation model based algorithms for determination of hillslope width functions through flow distance transforms. Water Resour. Res. 48(4), W04532. http://dx.doi.org/10.1029/2011WR011395.
    Lumbroso, D., Gaume, E., 2012. Reducing the uncertainty in indirect estimates of extreme flash flood discharges. J. Hydrol. 414–415, 16–30. http://dx.doi.org/10.1016/j.jhydrol.2011.08.048.
    McDonnell, J.J., Beven, K., 2014. Debates—The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities, and residence time distributions of the headwater hydrograph. Water Resour. Res. 50, 5342–5350. http://dx.doi.org/10.1002/2013WR015141.
    Medeiros, S.C., Hagen, S.C., Weishampel, J.F., 2012. Comparison of floodplain surface roughness parameters derived from land cover data and field measurements. J. Hydrol. 452–453(7), 139–149. http://dx.doi.org/10.1016/j.jhydrol.2012.05.043.
    Mügler, C., Planchon, O., Patin, J., Weill, S., Silvera, N., Richard, P., Mouche, E., 2011. Comparison of roughness models to simulate overland flow and tracer transport experiments under simulated rainfall at plot scale. J. Hydrol. 402(1–2), 25–40. http://dx.doi.org/10.1016/j.jhydrol.2011.02.032.
    Noarayanan, L., Murali, K., Sundar, V., 2012. Manning's ‘n’ co-efficient for flexible emergent vegetation in tandem configuration. J. Hydro-Environ. Res. 6(1), 51–62. http://dx.doi.org/10.1016/j.jher.2011.05.002.
    Podmore, T.H., Huggins, L.F., 1980. Surface roughness effects on overland flow. Transactions of the ASAE 23(6), 1434–1439. http://dx.doi.org/10.13031/2013.34794.
    Rai, R.K., Upadhyay, A., Singh, V.P., 2010. Effect of variable roughness on runoff. J. Hydrol. 382(1–2), 115–127. http://dx.doi.org/ 10.1016/j.jhydrol.2009.12.022.
    Remo, J.W.F., Pinter, N., 2007. Retro-modeling the middle Mississippi River. J. Hydrol. 337(3–4), 421–435. http://dx.doi.org/10.1016/j.jhydrol.2007.02.008.
    Roche, N., Da?än, J.F., Lawrence, D.S.L., 2007. Hydraulic modeling of runoff over a rough surface under partial inundation. Water Resour. Res. 43(8), W08410. http://dx.doi.org/10.1029/2006wr005484.
    Roels, J. M., 1984. Flow resistance in concentrated overland flow on rough slope surfaces. Earth Surf. Proc. Land. 9(6), 541–551. http://dx.doi.org/10.1002/esp.3290090608.
    Sahoo, G.B., Ray, C., De Carlo, E.H., 2006. Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream. J. Hydrol. 327(1–2), 94–109. http://dx.doi.org/ 10.1016/j.jhydrol.2005.11.012.
    Saxena, M., Perumal, M., 2014. Appraisal of overland flow modeling using HEC-HMS and a variable parameter Muskingum method. ISH J. Hydraul. Eng. 20(1), 102–110. http://dx.doi.org/10.1080/09715010.2013.848607.
    Schumann, G., Matgen, P., Hoffmann, L., Hostache, R., Pappenberger, F., Pfister, L., 2007. Deriving distributed roughness values from satellite radar data for flood inundation modeling. J. Hydrol. 344(1–2), 96–111. http://dx.doi.org/10.1016/j.jhydrol.2007.06.024.
    Shen, B., Li, H.E., Shen, J., 1994. Experimental studies of effective roughness in rainfall-overland flow processes. J. Hydraul. Eng. 25(10), 61-68 (in Chinese).
    Shit, P.K., Maiti, R., 2012. Rill Hydraulics: An experimental study on Gully Basin in lateritic upland of Paschim Medinipur, West Bengal, India. Journal of Geography and Geology 4(4), 1–11. http://dx.doi.org/10.5539/jgg.v4n4p1.
    Smith, M.W., Cox, N.J., Bracken, L.J., 2007. Applying flow resistance equations to overland flows. Prog. Phys. Geog. 31(4), 363–387. http://dx.doi.org/10.1177/0309133307081289.
    Stoof, C.R., Ferreira, A.J.D., Mol, W., Van den Berg, J., De Kort, A., Drooger, S., Slingerland, E., Mansholt, A.U., Ferreira, C.S.S., Ritsema, C.J., 2015. Soil surface changes increase runoff and erosion risk after a low-moderate severity fire. Geoderma. 239–240, 58–67. http://dx.doi.org/10.1016/j.geoderma.2014.09.020.
    Straatsma, M.W., Baptist, M.J., 2008. Floodplain roughness parameterization using airborne laser scanning and spectral remote sensing. Remote Sens. Environ. 112(3), 1062–1080. http://dx.doi.org/10.1016/j.rse.2007.07.012.
    Tarboton, D.G., 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res. 33(2), 309–319. http://dx.doi.org/10.1029/96WR03137.
    Torri, D., Poesen, J., Borselli, L., Bryan, R., Rossi, M., 2012. Spatial variation of bed roughness in eroding rills and gullies. CATENA 90(3), 76–86. http://dx.doi.org/10.1016/j.catena.2011.10.004.
    Wang, M.H., Hjelmfelt, A.T., 1998. DEM based overland flow routing model. Journal of Hydraulic Engineering-ASCE 3(1), 1–8. http://dx.doi.org/10.1061/(ASCE)1084-0699(1998)3:1(1).
    Wu, Y., Christensen, K.T., 2007. Turbulence modifications in the roughness sublayer of flow over a highly-irregular surface topology. In: Collection of Technical Papers of 37th AIAA Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics Inc., Reston, pp. 630–648.
    Zhang, G. H., 2002. Study on hydraulic properties of shallow flow. Advances in Water Science 13(2), 159–165 (in Chinese).
    Zhang, S.T., Kang, S.Z., 2005. Grid cell runoff distribution model based on vector roughness. J. Hydraul. Eng. 36(11), 1326–1330 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1013) PDF downloads(1520) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return