Citation: | Sheng-tang Zhang, Yin Liu, Miao-miao Li, Bo Liang. 2016: Distributed hydrological models for addressing effects of spatial variability of roughness on overland flow. Water Science and Engineering, 9(3): 249-255. doi: 10.1016/j.wse.2016.07.001 |
Barros, A.P., Colello, J.D., 2001. Surface roughness for shallow overland flow on crushed stone surface. J. Hydraul. Eng. 127(1), 38–52. http://dx.doi.org/10.1061/(ASCE)0733-9429(2001)127:1(38).
|
Bergstrom, S., Graham, L.P., 1998. On the scale problem in hydrological modelling. J. Hydrol. 211(1), 253–265. http://dx.doi.org/ 10.1016/S0022-1694(98)00248-0.
|
Candela, A., Noto, L.V., Aronica, G., 2006. Influence of surface roughness in hydrological response of semiarid catchments. J. Hydrol. 313(3–4), 119–131. http://dx.doi.org/10.1016/j.jhydrol.2005.01.023.
|
Cea, L., Legout, C., Darboux, F., Esteves, M., Nord, G., 2014. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data. J. Hydrol. 513, 142–153. http://dx.doi.org/10.1016/j.jhydrol.2014.03.052.
|
Chen, L., Li, Z.B., Li, P., Xu, G.C., Song, W., 2012. Hydraulic characteristics and flow energy consumption of accelerated erosion on steep slope woodland. Bulletin of Soil and Water Conservation 32(4), 5–9 (in Chinese).
|
Darboux, F., Davy, P., Gascuel-Odoux, C., Huang, C., 2002. Evolution of soil surface roughness and flowpath connectivity in overland flow experiments. CATENA 46(2–3), 125–139. http://dx.doi.org/10.1016/S0341-8162(01)00162-X.
|
Deng, P., Li, Z.J., 2013. Comparison of three hydrological models in flood simulation for Xixian Basin of Huaihe River. Journal of Hohai University (Natural Sciences) 41(5), 377–382 (in Chinese). http://dx.doi.org/10.3876/j.issn.1000-1980.2013.05.001.
|
Dunkerley, D., 2002. Volumetric displacement of flow depth by obstacles, and the determination of friction factors in shallow overland flows. Earth Surface Processes and Landforms 27(2), 165–175. http://dx.doi.org/10.1002/esp.309.
|
Engman, E.T., 1986. Roughness coefficients for routing surface runoff. J. Irrig. Drain. Eng. 112(1), 39–53. http://dx.doi.org/ 10.1061/(ASCE)0733-9437(1986)112:1(39).
|
Haque, M.A., 2002. Study of surface runoff using physical models. Environ. Geol. 41(7), 797–805. http://dx.doi.org/ 10.1007/s00254-001-0455-1.
|
Helmers, M.J., Eisenhauer, D.E., 2006. Overland flow modeling in a vegetative filter considering non-planar topography and spatial variability of soil hydraulic properties and vegetation density. J. Hydrol. 328(1–2), 267–282. http://dx.doi.org/ 10.1016/j.jhydrol.2005.12.026.
|
Jin, C.X., Romkens, M.J.M., Griffioen, F., 2000. Estimating manning's roughness coefficient for shallow overland flow in non-submerged vegetative filter strips. Transactions of the ASAE 43(6), 1459–1466. http://dx.doi.org/10.13031/2013.3044.
|
Laloy, E., Bielders, C.L., 2008. Plot scale continuous modelling of runoff in a maize cropping system with dynamic soil surface properties. J. Hydrol. 349(3–4), 455–469. http://dx.doi.org/10.1016/j.jhydrol.2007.11.033.
|
Lane, L.J., Woolhiser, D.A., 1977. Simplifications of watershed geometry affecting simulation of surface runoff. J. Hydrol. 35(1–2), 173–190. http://dx.doi.org/10.1016/0022-1694(77)90085-3.
|
Li, G., Wang, X., Zhao, X., Huang, E., Liu, X., Cao, S., 2013. Flexible and rigid vegetation in overland flow resistance. Transactions of the ASABE 56(3), 919-926. http://dx.doi.org/10.13031/trans.56.9559.
|
Liu, J.T., Chen, X., Zhang, J.B., Flury, M., 2009. Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting. Hydrol. Process. 23(9), 1337–1348. http://dx.doi.org/10.1016/j.iswcr.2015.03.004.
|
Liu, J.T., Chen, X., Zhang, X.N., Hoagland, K.D., 2012. Grid digital elevation model based algorithms for determination of hillslope width functions through flow distance transforms. Water Resour. Res. 48(4), W04532. http://dx.doi.org/10.1029/2011WR011395.
|
Lumbroso, D., Gaume, E., 2012. Reducing the uncertainty in indirect estimates of extreme flash flood discharges. J. Hydrol. 414–415, 16–30. http://dx.doi.org/10.1016/j.jhydrol.2011.08.048.
|
McDonnell, J.J., Beven, K., 2014. Debates—The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities, and residence time distributions of the headwater hydrograph. Water Resour. Res. 50, 5342–5350. http://dx.doi.org/10.1002/2013WR015141.
|
Medeiros, S.C., Hagen, S.C., Weishampel, J.F., 2012. Comparison of floodplain surface roughness parameters derived from land cover data and field measurements. J. Hydrol. 452–453(7), 139–149. http://dx.doi.org/10.1016/j.jhydrol.2012.05.043.
|
Mügler, C., Planchon, O., Patin, J., Weill, S., Silvera, N., Richard, P., Mouche, E., 2011. Comparison of roughness models to simulate overland flow and tracer transport experiments under simulated rainfall at plot scale. J. Hydrol. 402(1–2), 25–40. http://dx.doi.org/10.1016/j.jhydrol.2011.02.032.
|
Noarayanan, L., Murali, K., Sundar, V., 2012. Manning's ‘n’ co-efficient for flexible emergent vegetation in tandem configuration. J. Hydro-Environ. Res. 6(1), 51–62. http://dx.doi.org/10.1016/j.jher.2011.05.002.
|
Podmore, T.H., Huggins, L.F., 1980. Surface roughness effects on overland flow. Transactions of the ASAE 23(6), 1434–1439. http://dx.doi.org/10.13031/2013.34794.
|
Rai, R.K., Upadhyay, A., Singh, V.P., 2010. Effect of variable roughness on runoff. J. Hydrol. 382(1–2), 115–127. http://dx.doi.org/ 10.1016/j.jhydrol.2009.12.022.
|
Remo, J.W.F., Pinter, N., 2007. Retro-modeling the middle Mississippi River. J. Hydrol. 337(3–4), 421–435. http://dx.doi.org/10.1016/j.jhydrol.2007.02.008.
|
Roche, N., Da?än, J.F., Lawrence, D.S.L., 2007. Hydraulic modeling of runoff over a rough surface under partial inundation. Water Resour. Res. 43(8), W08410. http://dx.doi.org/10.1029/2006wr005484.
|
Roels, J. M., 1984. Flow resistance in concentrated overland flow on rough slope surfaces. Earth Surf. Proc. Land. 9(6), 541–551. http://dx.doi.org/10.1002/esp.3290090608.
|
Sahoo, G.B., Ray, C., De Carlo, E.H., 2006. Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream. J. Hydrol. 327(1–2), 94–109. http://dx.doi.org/ 10.1016/j.jhydrol.2005.11.012.
|
Saxena, M., Perumal, M., 2014. Appraisal of overland flow modeling using HEC-HMS and a variable parameter Muskingum method. ISH J. Hydraul. Eng. 20(1), 102–110. http://dx.doi.org/10.1080/09715010.2013.848607.
|
Schumann, G., Matgen, P., Hoffmann, L., Hostache, R., Pappenberger, F., Pfister, L., 2007. Deriving distributed roughness values from satellite radar data for flood inundation modeling. J. Hydrol. 344(1–2), 96–111. http://dx.doi.org/10.1016/j.jhydrol.2007.06.024.
|
Shen, B., Li, H.E., Shen, J., 1994. Experimental studies of effective roughness in rainfall-overland flow processes. J. Hydraul. Eng. 25(10), 61-68 (in Chinese).
|
Shit, P.K., Maiti, R., 2012. Rill Hydraulics: An experimental study on Gully Basin in lateritic upland of Paschim Medinipur, West Bengal, India. Journal of Geography and Geology 4(4), 1–11. http://dx.doi.org/10.5539/jgg.v4n4p1.
|
Smith, M.W., Cox, N.J., Bracken, L.J., 2007. Applying flow resistance equations to overland flows. Prog. Phys. Geog. 31(4), 363–387. http://dx.doi.org/10.1177/0309133307081289.
|
Stoof, C.R., Ferreira, A.J.D., Mol, W., Van den Berg, J., De Kort, A., Drooger, S., Slingerland, E., Mansholt, A.U., Ferreira, C.S.S., Ritsema, C.J., 2015. Soil surface changes increase runoff and erosion risk after a low-moderate severity fire. Geoderma. 239–240, 58–67. http://dx.doi.org/10.1016/j.geoderma.2014.09.020.
|
Straatsma, M.W., Baptist, M.J., 2008. Floodplain roughness parameterization using airborne laser scanning and spectral remote sensing. Remote Sens. Environ. 112(3), 1062–1080. http://dx.doi.org/10.1016/j.rse.2007.07.012.
|
Tarboton, D.G., 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res. 33(2), 309–319. http://dx.doi.org/10.1029/96WR03137.
|
Torri, D., Poesen, J., Borselli, L., Bryan, R., Rossi, M., 2012. Spatial variation of bed roughness in eroding rills and gullies. CATENA 90(3), 76–86. http://dx.doi.org/10.1016/j.catena.2011.10.004.
|
Wang, M.H., Hjelmfelt, A.T., 1998. DEM based overland flow routing model. Journal of Hydraulic Engineering-ASCE 3(1), 1–8. http://dx.doi.org/10.1061/(ASCE)1084-0699(1998)3:1(1).
|
Wu, Y., Christensen, K.T., 2007. Turbulence modifications in the roughness sublayer of flow over a highly-irregular surface topology. In: Collection of Technical Papers of 37th AIAA Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics Inc., Reston, pp. 630–648.
|
Zhang, G. H., 2002. Study on hydraulic properties of shallow flow. Advances in Water Science 13(2), 159–165 (in Chinese).
|
Zhang, S.T., Kang, S.Z., 2005. Grid cell runoff distribution model based on vector roughness. J. Hydraul. Eng. 36(11), 1326–1330 (in Chinese).
|