Volume 9 Issue 4
Oct.  2016
Turn off MathJax
Article Contents
Andreas Englert, Andreas Kemna, Jun-feng Zhu, Jan Vanderborght, Harry Vereecken, Tian-Chyi J. Yeh. 2016: Comparison of smoothness-constrained and geostatistically based cross-borehole electrical resistivity tomography for characterization of solute tracer plumes. Water Science and Engineering, 9(4): 274-286. doi: 10.1016/j.wse.2017.01.002
Citation: Andreas Englert, Andreas Kemna, Jun-feng Zhu, Jan Vanderborght, Harry Vereecken, Tian-Chyi J. Yeh. 2016: Comparison of smoothness-constrained and geostatistically based cross-borehole electrical resistivity tomography for characterization of solute tracer plumes. Water Science and Engineering, 9(4): 274-286. doi: 10.1016/j.wse.2017.01.002

Comparison of smoothness-constrained and geostatistically based cross-borehole electrical resistivity tomography for characterization of solute tracer plumes

doi: 10.1016/j.wse.2017.01.002
More Information
  • Corresponding author: Andreas Englert
  • Received Date: 2015-12-30
  • Rev Recd Date: 2016-09-11
  • Experiments using electrical resistivity tomography (ERT) have shown promising results in reducing the uncertainty of solute plume characteristics related to estimates based on the analysis of local point measurements only. To explore the similarities and differences between two cross-borehole ERT inversion approaches for characterizing salt tracer plumes, namely the classical smoothness-constrained inversion and a geostatistically based approach, we performed two-dimensional synthetic experiments. Simplifying assumptions about the solute transport model and the electrical forward and inverse model allowed us to study the sensitivity of the ERT inversion approaches towards a variety of basic conditions, including the number of boreholes, measurement schemes, contrast between the plume and background electrical conductivity, use of a priori knowledge, and point conditioning. The results show that geostatistically based and smoothness-constrained inversions of electrical resistance data yield plume characteristics of similar quality, which can be further improved when point measurements are incorporated and advantageous measurement schemes are chosen. As expected, an increased number of boreholes included in the ERT measurement layout can highly improve the quality of inferred plume characteristics, while in this case the benefits of point conditioning and advantageous measurement schemes diminish. Both ERT inversion approaches are similarly sensitive to the noise level of the data and the contrast between the solute plume and background electrical conductivity, and robust with regard to biased input parameters, such as mean concentration, variance, and correlation length of the plume. Although sophisticated inversion schemes have recently become available, in which flow and transport as well as electrical forward models are coupled, these schemes effectively rely on a relatively simple geometrical parameterization of the hydrogeological model. Therefore, we believe that standard uncoupled ERT inverse approaches, like the ones discussed and assessed in this paper, will continue to be important to the imaging and characterization of solute plumes in many real-world applications.

     

  • loading
  • Beaujean, J., Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P., 2014. Calibration of seawater intrusion models: Inverse parameter estimation using surface electrical resistivity tomography and borehole data. Water Resources Research, 50(8), 6828–6849. http://dx.doi.org/10.1002/2013WR014020.
    Binley, A., Henry-Poulter, S., Shaw, B., 1996. Examination of solute transport in an undisturbed soil column using electrical resistance tomography. Water Resources Research, 32(4), 763–769. http://dx.doi.org/10.1029/95WR02995.
    Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K., Slater, L.D., 2015. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research, 51(6), 3837–3866. http://dx.doi.org/10.1002/2015WR017016.
    Boggs, J.M., Young, S.C., Beard, L.M., Gelhar, L.W., Rehfeld, K.R., Adams, E.E., 1992. Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description. Water Resources Research, 28(12), 3281–3291. http://dx.doi.org/10.1029/92WR01756.
    Butler, J.J., Liu, W.Z., 1993. Pumping tests in nonuniform aquifers: The radially asymmetric case. Water Resources Research, 29(2), 259–269. http://dx.doi.org/10.1029/92WR02128.
    Chou, T.K., Chouteau, M., Dubé, J.S., 2016. Estimation of saturated hydraulic conductivity during infiltration test with the aid of ERT and level-set method. Vadose Zone J. 15(7). http://dx.doi.org/10.2136/vzj2015.05.0082.
    Constable, S.C., Parker, R.L., Constable, C.G., 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289–300. http://dx.doi.org/10.1190/1.1442303.
    Daily, W., Ramirez, A., LaBrecque, D., Barber, W., 1995. Electrical resistivity tomography experiments at the Oregon Graduate Institute. Journal of Applied Geophysics, 33(4), 227–237. http://dx.doi.org/10.1016/0926-9851(95)90043-8.
    Day-Lewis, F.D., Singha, K., Binley, A.M., 2005. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations. Journal of Geophysical Research: Solid Earth, 110(B8). http://dx.doi.org/10.1029/2004JB003569.
    Day-Lewis, F.D., Chen, Y., Singha, K., 2007. Moment inference from tomograms. Geophysical Research Letters, 34, L22404. http://dx.doi.org/10.1029/2007GL031621.
    deGroot-Hedlin, C., Constable, S., 1990. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613–1624. http://dx.doi.org/10.1190/1.1442813.
    Delleur, J.W., 1999. The Handbook of Groundwater Engineering. CRC Press and Sringer Verlag, Boca Raton and Heidelberg.
    Ellis, R.G., Oldenburg, D.W., 1994. Applied geophysical inversion. Geophysical Journal International, 116(1), 5–11. http://dx.doi.org/10.1111/j.1365-246X.1994.tb02122.x.
    Ferré, T., Bentley, L., Binley, A., Linde, N., Kemna, A., Singha, K., Holliger, K., Huisman, J.A., Minsley, B., 2009. Critical steps for the continuing advancement of hydrogeophysics. Eos Trans. AGU, 90(23), 200. http://dx.doi.org/10.1029/2009EO230004.
    Ganz, C., Bachmann, J., Noell, U., Duijnisveld, W.H.M., Lamparter, A., 2015. Hydraulic modeling and in situ electrical resistivity tomography to analyze ponded infiltration into a water repellent sand. Vadose Zone Journal, 13(1). http://dx.doi.org/10.2136/vzj2013.04.0074.
    Gottlieb, J., Dietrich, P., 1995. Identification of the permeability distribution in soil by hydraulic tomography. Inverse Problems, 11(2), 353–360. http://dx.doi.org/10.1088/0266-5611/11/2/005.
    Haarder, E.B., Jensen, K.H., Binley, A., Nielsen, L., Uglebjerg, T.B., Looms, M.C., 2015. Estimation of recharge from long-term monitoring of saline tracer transport using electrical resistivity tomography. Vadose Zone Journal, 14(7). http://dx.doi.org/10.2136/vzj2014.08.0110.
    Hao, Y.H., Yeh, T.C.J., Xiang, J.W., Illman, W.A., Ando, K., Hsu, K.C., Lee, C.H., 2008. Hydraulic tomography for detecting fracture zone connectivity. Groundwater, 46(2), 183–192. http://dx.doi.org/10.1111/j.1745-6584.2007.00388.x.
    Hermans T., Vandenbohede, A., Lebbe, L., Martin, R., Kemna, A., Beaujean, J., Nguyen, F., 2012. Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data. Journal of Hydrology, 438–439, 168–180. http://dx.doi.org/10.1016/j.jhydrol.2012.03.021.
    Hermans, T., Kemna, A., Nguyen, F., 2016. Covariance-constrained difference inversion of time-lapse electrical resistivity tomography data. Geophysics, 81(5), 311–322. http://dx.doi.org/10.1190/GEO2015-0491.1.
    Illman, W.A., Berg, S.J., Zhao, Z.F., 2015. Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation. Water Resources Research, 51(5), 3219–3237. http://dx.doi.org/10.1002/2014WR016552.
    Kemna, A., 2000. Tomographic Inversion of Complex Resistivity: Theory and Application. Ph.D. Dissertation. Ruhr-University of Bochum, Bochum.
    Kemna, A., Vanderborght, J., Kulessa, B., Vereecken, H., 2002. Imaging and characterisation of sub-surface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 267(3–4), 125–146. http://dx.doi.org/10.1016/S0022-1694(02)00145-2.
    Kemna, A., Binley, A., Day-Lewis, F., Englert, A., Tezkan, B., Vanderborght, J., Vereecken, H., Winship, P., 2006. Solute transport processes. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K., eds., Applied Hydrogeophysics. NATO Science Series IV: Earth and Environmental Sciences, Vol. 71. Springer, pp. 117–159. http://dx.doi.org/10.1007/978-1-4020-4912-5_5.
    Kitanidis, P.K., 1999. Generalized covariance functions associated with the Laplace equation and their use in interpolation and inverse problems. Water Resources Research, 35(5), 1361–1367. http://dx.doi.org/10.1029/1999WR900026.
    Koestel, J., Kemna, A., Javaux, M., Binley, A., Vereecken, H., 2008. Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR. Water Resources Research, 44(12), W12411. http://dx.doi.org/10.1029/2007WR006755.
    Koestel, J., Vanderborght, J., Javaux, M., Kemna, A., Binley, A., Vereecken, H., 2009a. Noninvasive 3-D transport characterization in a sandy soil using ERT: 1. Investigating the validity of ERT-derived transport parameters. Vadose Zone Journal, 8(3), 711–722. http://dx.doi.org/10.2136/vzj2008.0027.
    Koestel, J., Vanderborght, J., Javaux, M., Kemna, A., Binley, A., Vereecken, H., 2009b. Noninvasive 3-D transport characterization in a sandy soil using ERT: 2. Transport process inference. Vadose Zone Journal, 8(3), 723–734. http://dx.doi.org/10.2136/vzj2008.0154.
    Korteland, S.A., Heimovaara, T., 2015. Quantitative inverse modelling of a cylindrical object in the laboratory using ERT: An error analysis. Journal of Applied Geophysics, 114, 101–115. http://dx.doi.org/10.1016/j.jappgeo.2014.10.026.
    Kowalsky, M.B., Finsterle, S., Peterson, J., Hubbard, S., Rubin, Y., Majer, E., Ward, A., Gee, G., 2005. Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resources Research, 41(11), W11425. http://dx.doi.org/10.1029/2005wr004237.
    Kraichnan, R.H., 1970. Diffusion by a random velocity field. The Physics of Fluids, 13(1), 22–31. http://dx.doi.org/10.1063/1.1692799.
    LaBrecque, D.J., Miletto, M., Daily, W., Ramirez, A., Owen, E., 1996. The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics, 61(2), 538–548. http://dx.doi.org/10.1190/1.1443980.
    LaBrecque, D.J., Yang, X.J., 2000. Difference inversion of ERT data: A fast inversion method for 3-D in situ monitoring. Journal of Environmental and Engineering Geophysics, 6(2), 83–89. http://dx.doi.org/10.4133/JEEG6.2.83.
    LeBlanc, D.R., Garabedian, S.P., Hess, K.M., Gelhar, L.W., Quadri, R.D., Stollenwerk, K.G., Wood, W.W., 1991. Large scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. Experimental design and observed tracer moment. Water Resources Research, 27(5), 895–910. http://dx.doi.org/10.1029/91WR00241.
    Lehikoinen, A., Finsterle, S., Voutilainen, A., Kowalsky, M.B., Kaipio, J.P., 2009. Dynamical inversion of geophysical ERT data: State estimation in the vadose zone. Inverse Problems in Science and Engineering, 17(6), 715–736. http://dx.doi.org/10.1080/17415970802475951.
    Linde, N., Binley, A., Tryggvason, A., Pedersen, L.B., Revil, A., 2006. Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resources Research, 42(12), W12404. http://dx.doi.org/10.1029/2006WR005131.
    Liu, S.Y., Yeh, T.C.J., 2004. An integrative approach for monitoring water movement in the vadose zone. Vadose Zone Journal, 3(2), 681–692. http://dx.doi.org/10.2113/3.2.681.
    Loke, M.H., Wilkinson, P.B., Chambers, J.E., Uhlemann, S.S., Sorensen, J.P.R., 2015. Optimized arrays for 2-d resistivity survey lines with a large number of electrodes. Journal of Applied Geophysics, 112, 136–146. http://dx.doi.org/10.1016/j.jappgeo.2014.11.011.
    Looms, M.C., Jensen, K.H., Binley, A., Nielsen, L., 2008. Monitoring unsaturated flow and transport using cross-borehole geophysical methods. Vadose Zone Journal, 7(1), 227–237. http://dx.doi.org/10.2136/vzj2006.0129.
    Mackay, D.M., Freyberg, D.L., Roberts, P.V., Cherry, J.A., 1986. A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of plume movement. Water Resources Research, 22(13), 2017–2029. http://dx.doi.org/10.1029/WR022i013p02017.
    Moysey, S., Singha, K., Knight, R., 2005. A framework for inferring field-scale rock physics relationships through numerical simulation. Geophysical Research Letters, 32(8). http://dx.doi.org/10.1029/2004GL022152.
    Müller, K., Vanderborght, J., Englert, A., Kemna, A., Huisman, J.A., Rings, J., Vereecken, H., 2010. Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resources Research, 46(3), W03502. http://dx.doi.org/10.1029/2008WR007595.
    Neuendorf, O., 1996. Numerische 3-D Simulation des Stofftransportes in einem Heterogenen Aquifer. Ph.D. Dissertation. RWTH Aachen, Aachen.
    Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P., Kuras, O., Ogilvy, R., Gisbert, J., Jorreto, S., Pulido-Bosch, A., 2009. Characterization of seawater intrusion using 2D electrical imaging. Near Surface Geophysics, 7(5–6), 377–390. http://dx.doi.org/10.3997/1873-0604.2009025.
    Persson, M., Dahlin, T., Günther, T., 2015. Observing solute transport in the capillary fringe using image analysis and electrical resistivity tomography in laboratory experiments. Vadose Zone Journal, 14(5). http://dx.doi.org/10.2136/vzj2014.07.0085.
    Pidlisecky, A., Singha, K., Day-Lewis, F.D., 2011. Distribution-based parametrization for improved tomographic imaging of solute plumes. Geophysical Journal International, 187(1), 214–224. http://dx.doi.org/10.1111/j.1365-246X.2011.05131.x.
    Revil, A., Karaoulis, M., Johnson, T., Kemna, A., 2012. Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal, 20(4), 617–658. http://dx.doi.org/10.1007/s10040-011-0819-x.
    Rubin, Y., Hubbard, S.S., 2005. Hydrogeophysics, 1st ed. Springer, Dordrecht.
    Seidemann, R., 1996. Parallelisierung eines Finite Elemente Programms zur Modellierung des Transports von Stoffen durch Heterogene Poröse Medien. Ph.D. Dissertation. Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn.
    Singha, K., Gorelick, S.M., 2005. Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis. Water Resources Research, 41(5), W05023. http://dx.doi.org/10.1029/2004WR003460.
    Singha, K., Day-Lewis, F.D., Johnson, T., Slater, L.D., 2015. Advances in interpretation of subsurface processes with time-lapse electrical imaging. Hydrological Processs, 29(6), 1549–1576. http://dx.doi.org/10.1002/hyp.10280.
    Slater, L., Binley, A., Versteeg, R., Cassiani, G., Birken, R., Sandberg, S., 2002. A 3D ERT study of solute transport in a large experimental tank. Journal of Applied Geophysics, 49(4), 211–229. http://dx.doi.org/10.1016/S0926-9851(02)00124-6.
    Vanderborght, J., 2001. Concentration variance and spatial covariance in second-order stationary heterogeneous conductivity fields. Water Resources Research, 37(7), 1893–1912. http://dx.doi.org/10.1029/2001WR900025.
    Vanderborght, J., Kemna, A., Hardelauf, H., Vereecken, H., 2005. Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: A synthetic case study. Water Resources Research, 41(6), W06013. http://dx.doi.org/10.1029/2004WR003774.
    Vereecken, H., Lindenmayr, G., Neuendorf, O., Döring, U., Seidemann, R., 1994. Trace a Mathematical Model for Reactive Transport in 3D Variably Saturated Porous Media. Tech. rep., KFA-ICG-4-501494, Jülich.
    Vereecken, H., Neuendorf, O., Lindenmayr, G., Basermann, A., 1996. A Schwarz domain decomposition method for solution of transient unsaturated water flow on parallel computers. Ecological Modelling, 93(1–3), 275–289. http://dx.doi.org/10.1016/0304-3800(95)00224-3.
    Vereecken, H., Döring, U., Hardelauf, H., Jaekel, U., Hashagen, U., Neuendorf, O., Schwarze, H., Seidemann, R., 2000. Analysis of solute transport in heterogeneous aquifer: The Krauthausen field experiment. Journal of Contaminant Hydrology, 45(3–4), 329–358. http://dx.doi.org/10.1016/S0169-7722(00)00107-8.
    Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K., 2006. Applied Hydrogeophysics. Springer, pp. 1–9.
    Wu, C.M., Yeh, T.C.J., Zhu, J., Lee, T.H., Hsu, N.S., Chen, C.H., Sancho, A.F., 2005. Traditional analysis of aquifer tests: Comparing apples to oranges? Water Resources Research, 41(9), W09402. http://dx.doi.org/10.1029/2004WR003717.
    Yeh, T.C.J., Liu, S., 2000. Hydraulic tomography: Development of a new aquifer test method. Water Resources Research, 36(8), 2095–2105. http://dx.doi.org/10.1029/2000WR900114.
    Yeh, T.C.J., Liu, S., Glass, R., Baker, K., Brainard, J., Alumbaugh, D., LaBrecque, D., 2002. A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Water Resources Research, 38(12), 1278. http://dx.doi.org/10.1029/2001WR001204.
    Yeh, T.C.J., Zhu, J., Englert, A., Guzman, A., Flaherty, S., 2006. A successive linear estimator for electrical resistivity tomography. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K., eds., Applied Hydrogeophysics. Springer, pp. 45–74.
    Zhu, J., Yeh, T.C.J., 2005. Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resources Research, 41(7), W07028. http://dx.doi.org/10.1029/2004WR003790.
    Zimmerman, D.A., de Marsily, G., Gotway, C.A., Marietta, M.G., Axness, C.L., Beauheim, R.L., Bras, R.L., Carrera, J., Dagan, G., Davies, P.B., et al. 1998. A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resources Research, 34(6), 1373–1413. http://dx.doi.org/10.1029/98WR00003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (942) PDF downloads(1652) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return