Citation: | Andreas Englert, Andreas Kemna, Jun-feng Zhu, Jan Vanderborght, Harry Vereecken, Tian-Chyi J. Yeh. 2016: Comparison of smoothness-constrained and geostatistically based cross-borehole electrical resistivity tomography for characterization of solute tracer plumes. Water Science and Engineering, 9(4): 274-286. doi: 10.1016/j.wse.2017.01.002 |
Beaujean, J., Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P., 2014. Calibration of seawater intrusion models: Inverse parameter estimation using surface electrical resistivity tomography and borehole data. Water Resources Research, 50(8), 6828–6849. http://dx.doi.org/10.1002/2013WR014020.
|
Binley, A., Henry-Poulter, S., Shaw, B., 1996. Examination of solute transport in an undisturbed soil column using electrical resistance tomography. Water Resources Research, 32(4), 763–769. http://dx.doi.org/10.1029/95WR02995.
|
Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K., Slater, L.D., 2015. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research, 51(6), 3837–3866. http://dx.doi.org/10.1002/2015WR017016.
|
Boggs, J.M., Young, S.C., Beard, L.M., Gelhar, L.W., Rehfeld, K.R., Adams, E.E., 1992. Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description. Water Resources Research, 28(12), 3281–3291. http://dx.doi.org/10.1029/92WR01756.
|
Butler, J.J., Liu, W.Z., 1993. Pumping tests in nonuniform aquifers: The radially asymmetric case. Water Resources Research, 29(2), 259–269. http://dx.doi.org/10.1029/92WR02128.
|
Chou, T.K., Chouteau, M., Dubé, J.S., 2016. Estimation of saturated hydraulic conductivity during infiltration test with the aid of ERT and level-set method. Vadose Zone J. 15(7). http://dx.doi.org/10.2136/vzj2015.05.0082.
|
Constable, S.C., Parker, R.L., Constable, C.G., 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289–300. http://dx.doi.org/10.1190/1.1442303.
|
Daily, W., Ramirez, A., LaBrecque, D., Barber, W., 1995. Electrical resistivity tomography experiments at the Oregon Graduate Institute. Journal of Applied Geophysics, 33(4), 227–237. http://dx.doi.org/10.1016/0926-9851(95)90043-8.
|
Day-Lewis, F.D., Singha, K., Binley, A.M., 2005. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations. Journal of Geophysical Research: Solid Earth, 110(B8). http://dx.doi.org/10.1029/2004JB003569.
|
Day-Lewis, F.D., Chen, Y., Singha, K., 2007. Moment inference from tomograms. Geophysical Research Letters, 34, L22404. http://dx.doi.org/10.1029/2007GL031621.
|
deGroot-Hedlin, C., Constable, S., 1990. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613–1624. http://dx.doi.org/10.1190/1.1442813.
|
Delleur, J.W., 1999. The Handbook of Groundwater Engineering. CRC Press and Sringer Verlag, Boca Raton and Heidelberg.
|
Ellis, R.G., Oldenburg, D.W., 1994. Applied geophysical inversion. Geophysical Journal International, 116(1), 5–11. http://dx.doi.org/10.1111/j.1365-246X.1994.tb02122.x.
|
Ferré, T., Bentley, L., Binley, A., Linde, N., Kemna, A., Singha, K., Holliger, K., Huisman, J.A., Minsley, B., 2009. Critical steps for the continuing advancement of hydrogeophysics. Eos Trans. AGU, 90(23), 200. http://dx.doi.org/10.1029/2009EO230004.
|
Ganz, C., Bachmann, J., Noell, U., Duijnisveld, W.H.M., Lamparter, A., 2015. Hydraulic modeling and in situ electrical resistivity tomography to analyze ponded infiltration into a water repellent sand. Vadose Zone Journal, 13(1). http://dx.doi.org/10.2136/vzj2013.04.0074.
|
Gottlieb, J., Dietrich, P., 1995. Identification of the permeability distribution in soil by hydraulic tomography. Inverse Problems, 11(2), 353–360. http://dx.doi.org/10.1088/0266-5611/11/2/005.
|
Haarder, E.B., Jensen, K.H., Binley, A., Nielsen, L., Uglebjerg, T.B., Looms, M.C., 2015. Estimation of recharge from long-term monitoring of saline tracer transport using electrical resistivity tomography. Vadose Zone Journal, 14(7). http://dx.doi.org/10.2136/vzj2014.08.0110.
|
Hao, Y.H., Yeh, T.C.J., Xiang, J.W., Illman, W.A., Ando, K., Hsu, K.C., Lee, C.H., 2008. Hydraulic tomography for detecting fracture zone connectivity. Groundwater, 46(2), 183–192. http://dx.doi.org/10.1111/j.1745-6584.2007.00388.x.
|
Hermans T., Vandenbohede, A., Lebbe, L., Martin, R., Kemna, A., Beaujean, J., Nguyen, F., 2012. Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data. Journal of Hydrology, 438–439, 168–180. http://dx.doi.org/10.1016/j.jhydrol.2012.03.021.
|
Hermans, T., Kemna, A., Nguyen, F., 2016. Covariance-constrained difference inversion of time-lapse electrical resistivity tomography data. Geophysics, 81(5), 311–322. http://dx.doi.org/10.1190/GEO2015-0491.1.
|
Illman, W.A., Berg, S.J., Zhao, Z.F., 2015. Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation. Water Resources Research, 51(5), 3219–3237. http://dx.doi.org/10.1002/2014WR016552.
|
Kemna, A., 2000. Tomographic Inversion of Complex Resistivity: Theory and Application. Ph.D. Dissertation. Ruhr-University of Bochum, Bochum.
|
Kemna, A., Vanderborght, J., Kulessa, B., Vereecken, H., 2002. Imaging and characterisation of sub-surface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 267(3–4), 125–146. http://dx.doi.org/10.1016/S0022-1694(02)00145-2.
|
Kemna, A., Binley, A., Day-Lewis, F., Englert, A., Tezkan, B., Vanderborght, J., Vereecken, H., Winship, P., 2006. Solute transport processes. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K., eds., Applied Hydrogeophysics. NATO Science Series IV: Earth and Environmental Sciences, Vol. 71. Springer, pp. 117–159. http://dx.doi.org/10.1007/978-1-4020-4912-5_5.
|
Kitanidis, P.K., 1999. Generalized covariance functions associated with the Laplace equation and their use in interpolation and inverse problems. Water Resources Research, 35(5), 1361–1367. http://dx.doi.org/10.1029/1999WR900026.
|
Koestel, J., Kemna, A., Javaux, M., Binley, A., Vereecken, H., 2008. Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR. Water Resources Research, 44(12), W12411. http://dx.doi.org/10.1029/2007WR006755.
|
Koestel, J., Vanderborght, J., Javaux, M., Kemna, A., Binley, A., Vereecken, H., 2009a. Noninvasive 3-D transport characterization in a sandy soil using ERT: 1. Investigating the validity of ERT-derived transport parameters. Vadose Zone Journal, 8(3), 711–722. http://dx.doi.org/10.2136/vzj2008.0027.
|
Koestel, J., Vanderborght, J., Javaux, M., Kemna, A., Binley, A., Vereecken, H., 2009b. Noninvasive 3-D transport characterization in a sandy soil using ERT: 2. Transport process inference. Vadose Zone Journal, 8(3), 723–734. http://dx.doi.org/10.2136/vzj2008.0154.
|
Korteland, S.A., Heimovaara, T., 2015. Quantitative inverse modelling of a cylindrical object in the laboratory using ERT: An error analysis. Journal of Applied Geophysics, 114, 101–115. http://dx.doi.org/10.1016/j.jappgeo.2014.10.026.
|
Kowalsky, M.B., Finsterle, S., Peterson, J., Hubbard, S., Rubin, Y., Majer, E., Ward, A., Gee, G., 2005. Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resources Research, 41(11), W11425. http://dx.doi.org/10.1029/2005wr004237.
|
Kraichnan, R.H., 1970. Diffusion by a random velocity field. The Physics of Fluids, 13(1), 22–31. http://dx.doi.org/10.1063/1.1692799.
|
LaBrecque, D.J., Miletto, M., Daily, W., Ramirez, A., Owen, E., 1996. The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics, 61(2), 538–548. http://dx.doi.org/10.1190/1.1443980.
|
LaBrecque, D.J., Yang, X.J., 2000. Difference inversion of ERT data: A fast inversion method for 3-D in situ monitoring. Journal of Environmental and Engineering Geophysics, 6(2), 83–89. http://dx.doi.org/10.4133/JEEG6.2.83.
|
LeBlanc, D.R., Garabedian, S.P., Hess, K.M., Gelhar, L.W., Quadri, R.D., Stollenwerk, K.G., Wood, W.W., 1991. Large scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. Experimental design and observed tracer moment. Water Resources Research, 27(5), 895–910. http://dx.doi.org/10.1029/91WR00241.
|
Lehikoinen, A., Finsterle, S., Voutilainen, A., Kowalsky, M.B., Kaipio, J.P., 2009. Dynamical inversion of geophysical ERT data: State estimation in the vadose zone. Inverse Problems in Science and Engineering, 17(6), 715–736. http://dx.doi.org/10.1080/17415970802475951.
|
Linde, N., Binley, A., Tryggvason, A., Pedersen, L.B., Revil, A., 2006. Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resources Research, 42(12), W12404. http://dx.doi.org/10.1029/2006WR005131.
|
Liu, S.Y., Yeh, T.C.J., 2004. An integrative approach for monitoring water movement in the vadose zone. Vadose Zone Journal, 3(2), 681–692. http://dx.doi.org/10.2113/3.2.681.
|
Loke, M.H., Wilkinson, P.B., Chambers, J.E., Uhlemann, S.S., Sorensen, J.P.R., 2015. Optimized arrays for 2-d resistivity survey lines with a large number of electrodes. Journal of Applied Geophysics, 112, 136–146. http://dx.doi.org/10.1016/j.jappgeo.2014.11.011.
|
Looms, M.C., Jensen, K.H., Binley, A., Nielsen, L., 2008. Monitoring unsaturated flow and transport using cross-borehole geophysical methods. Vadose Zone Journal, 7(1), 227–237. http://dx.doi.org/10.2136/vzj2006.0129.
|
Mackay, D.M., Freyberg, D.L., Roberts, P.V., Cherry, J.A., 1986. A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of plume movement. Water Resources Research, 22(13), 2017–2029. http://dx.doi.org/10.1029/WR022i013p02017.
|
Moysey, S., Singha, K., Knight, R., 2005. A framework for inferring field-scale rock physics relationships through numerical simulation. Geophysical Research Letters, 32(8). http://dx.doi.org/10.1029/2004GL022152.
|
Müller, K., Vanderborght, J., Englert, A., Kemna, A., Huisman, J.A., Rings, J., Vereecken, H., 2010. Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resources Research, 46(3), W03502. http://dx.doi.org/10.1029/2008WR007595.
|
Neuendorf, O., 1996. Numerische 3-D Simulation des Stofftransportes in einem Heterogenen Aquifer. Ph.D. Dissertation. RWTH Aachen, Aachen.
|
Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P., Kuras, O., Ogilvy, R., Gisbert, J., Jorreto, S., Pulido-Bosch, A., 2009. Characterization of seawater intrusion using 2D electrical imaging. Near Surface Geophysics, 7(5–6), 377–390. http://dx.doi.org/10.3997/1873-0604.2009025.
|
Persson, M., Dahlin, T., Günther, T., 2015. Observing solute transport in the capillary fringe using image analysis and electrical resistivity tomography in laboratory experiments. Vadose Zone Journal, 14(5). http://dx.doi.org/10.2136/vzj2014.07.0085.
|
Pidlisecky, A., Singha, K., Day-Lewis, F.D., 2011. Distribution-based parametrization for improved tomographic imaging of solute plumes. Geophysical Journal International, 187(1), 214–224. http://dx.doi.org/10.1111/j.1365-246X.2011.05131.x.
|
Revil, A., Karaoulis, M., Johnson, T., Kemna, A., 2012. Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal, 20(4), 617–658. http://dx.doi.org/10.1007/s10040-011-0819-x.
|
Rubin, Y., Hubbard, S.S., 2005. Hydrogeophysics, 1st ed. Springer, Dordrecht.
|
Seidemann, R., 1996. Parallelisierung eines Finite Elemente Programms zur Modellierung des Transports von Stoffen durch Heterogene Poröse Medien. Ph.D. Dissertation. Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn.
|
Singha, K., Gorelick, S.M., 2005. Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis. Water Resources Research, 41(5), W05023. http://dx.doi.org/10.1029/2004WR003460.
|
Singha, K., Day-Lewis, F.D., Johnson, T., Slater, L.D., 2015. Advances in interpretation of subsurface processes with time-lapse electrical imaging. Hydrological Processs, 29(6), 1549–1576. http://dx.doi.org/10.1002/hyp.10280.
|
Slater, L., Binley, A., Versteeg, R., Cassiani, G., Birken, R., Sandberg, S., 2002. A 3D ERT study of solute transport in a large experimental tank. Journal of Applied Geophysics, 49(4), 211–229. http://dx.doi.org/10.1016/S0926-9851(02)00124-6.
|
Vanderborght, J., 2001. Concentration variance and spatial covariance in second-order stationary heterogeneous conductivity fields. Water Resources Research, 37(7), 1893–1912. http://dx.doi.org/10.1029/2001WR900025.
|
Vanderborght, J., Kemna, A., Hardelauf, H., Vereecken, H., 2005. Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: A synthetic case study. Water Resources Research, 41(6), W06013. http://dx.doi.org/10.1029/2004WR003774.
|
Vereecken, H., Lindenmayr, G., Neuendorf, O., Döring, U., Seidemann, R., 1994. Trace a Mathematical Model for Reactive Transport in 3D Variably Saturated Porous Media. Tech. rep., KFA-ICG-4-501494, Jülich.
|
Vereecken, H., Neuendorf, O., Lindenmayr, G., Basermann, A., 1996. A Schwarz domain decomposition method for solution of transient unsaturated water flow on parallel computers. Ecological Modelling, 93(1–3), 275–289. http://dx.doi.org/10.1016/0304-3800(95)00224-3.
|
Vereecken, H., Döring, U., Hardelauf, H., Jaekel, U., Hashagen, U., Neuendorf, O., Schwarze, H., Seidemann, R., 2000. Analysis of solute transport in heterogeneous aquifer: The Krauthausen field experiment. Journal of Contaminant Hydrology, 45(3–4), 329–358. http://dx.doi.org/10.1016/S0169-7722(00)00107-8.
|
Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K., 2006. Applied Hydrogeophysics. Springer, pp. 1–9.
|
Wu, C.M., Yeh, T.C.J., Zhu, J., Lee, T.H., Hsu, N.S., Chen, C.H., Sancho, A.F., 2005. Traditional analysis of aquifer tests: Comparing apples to oranges? Water Resources Research, 41(9), W09402. http://dx.doi.org/10.1029/2004WR003717.
|
Yeh, T.C.J., Liu, S., 2000. Hydraulic tomography: Development of a new aquifer test method. Water Resources Research, 36(8), 2095–2105. http://dx.doi.org/10.1029/2000WR900114.
|
Yeh, T.C.J., Liu, S., Glass, R., Baker, K., Brainard, J., Alumbaugh, D., LaBrecque, D., 2002. A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Water Resources Research, 38(12), 1278. http://dx.doi.org/10.1029/2001WR001204.
|
Yeh, T.C.J., Zhu, J., Englert, A., Guzman, A., Flaherty, S., 2006. A successive linear estimator for electrical resistivity tomography. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K., eds., Applied Hydrogeophysics. Springer, pp. 45–74.
|
Zhu, J., Yeh, T.C.J., 2005. Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resources Research, 41(7), W07028. http://dx.doi.org/10.1029/2004WR003790.
|
Zimmerman, D.A., de Marsily, G., Gotway, C.A., Marietta, M.G., Axness, C.L., Beauheim, R.L., Bras, R.L., Carrera, J., Dagan, G., Davies, P.B., et al. 1998. A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resources Research, 34(6), 1373–1413. http://dx.doi.org/10.1029/98WR00003.
|