Volume 9 Issue 4
Oct.  2016
Turn off MathJax
Article Contents
Azadeh Gholami, Hossein Bonakdari, Ali Akbar Akhtari. 2016: Assessment of water depth change patterns in 120° sharp bend using numerical model. Water Science and Engineering, 9(4): 336-344. doi: 10.1016/j.wse.2017.01.004
Citation: Azadeh Gholami, Hossein Bonakdari, Ali Akbar Akhtari. 2016: Assessment of water depth change patterns in 120° sharp bend using numerical model. Water Science and Engineering, 9(4): 336-344. doi: 10.1016/j.wse.2017.01.004

Assessment of water depth change patterns in 120° sharp bend using numerical model

doi: 10.1016/j.wse.2017.01.004
More Information
  • Corresponding author: Hossein Bonakdari
  • Received Date: 2015-11-29
  • Rev Recd Date: 2016-04-26
  • In this study, FLUENT software was employed to simulate the flow pattern and water depth changes in a 120° sharp bend at four discharge rates. To verify the numerical model, a 90° sharp bend was first modeled with a three-dimensional numerical model, and the results were compared with available experimental results. Based on the numerical model validation, a 120° bend was simulated. The results show that the rate of increase of the water depth at the cross-section located 40 cm before the bend, compared with the cross-sections located 40 cm and 80 cm after the bend, decreases with the increase of the normal water depth in the 120° curved channel. Moreover, with increasing normal water depth, the water depth change decreases at all cross-sections. At the interior cross-sections of the bend, the transverse water depth slope of the inner half-width is always greater than that of the outer half-width of the channel. Hence, the water depth slope is nonlinear at each cross-section in sharp bends. Two equations reflecting the relationships between the maximum and minimum dimensionless water depths and the normal water depth throughout the channel were obtained.

     

  • loading
  • Akhtari, A.A., Abrishami, J., Sharifi, M.B., 2009. Experimental investigations of water surface characteristics in strongly-curved open channels. Journal of Applied Sciences 9(20), 3699−3706. http://dx.doi.org/10.3923/jas.2009.3699.3706.
    Anwar, H.O., 1986. Turbulent structure in a river bend. Journal of Hydraulic Engineering 112(8), 657−669. http://dx.doi.org/10.1061/(ASCE)0733-9429(1986)112:8(657).
    Armfield Limited, Co., 1995. Instruction Manual of Miniature Propeller Velocity Meter Type H33. Armfield Limited, Co., Ringwood.
    Baghlani, A., 2012. Application of a high-resolution scheme in simulation of flow in curved channel using boundary-fitted curvilinear coordinates. Scientia Iranica 19(6), 1463−1472. http://dx.doi.org/10.1016/j.scient.2012.10.006.
    Bergs, M.A., 1990. Flow processes in a curved alluvial channel. Ph. D. Dissertation. The University of Iowa, Iowa.
    Blanckaert, K., Graf, W.H., 2001. Mean flow and turbulence in open channel bend. Journal of Hydraulic Engineering 127(10), 835−847. http://dx.doi.org/10.1061/(ASCE)0733-9429(2001)127:10(835).
    Bodnár, T., P?íhoda, J., 2006. Numerical simulation of turbulent free-surface flow in curved channel. Flow, Turbulence and Combustion 76(4), 429−442. http://dx.doi.org/10.1007/s10494-006-9030-x.
    DeMarchis, M.D., Napoli, E., 2006. 3D numerical simulation of curved open channel flows. In: Proceedings of the 6th International Conference on Water Resources, Hydraulics and Hydrology. TEI of Chalkida, pp. 86−91.
    Ferguson, R.I., Parsons, D.R., Lane, S.N., Hardy, R.J., 2003. Flow in meander bends with recirculation at the inner bank. Water Resources Research 39(11), 1322. http://dx.doi.org/10.1029/2003WR001965.
    FLUENT Manual, 2005. Manual and User Guide of FLUENT Software. FLUENT Inc., New York.
    Gholami, A., Akhtari, A.A., Minatour, Y., Bonakdari, H., Javadi, A.A., 2014. Experimental and numerical study on velocity fields and water surface profile in a strongly-curved 90° open channel bend. Engineering Applications of Computational Fluid Mechanics (EACFM) 8(3), 447−461. http://dx.doi.org/10.1080/19942060.2014.11015528.
    Gholami, A., Bonakdari, H., Zaji, A.H., Akhtari, A.A., Khodashenas, S.R., 2015a. Predicting the velocity field in a 90º open channel bend using a gene expression programming model. Flow Measurement and Instrumentation 46, 189−192. http://dx.doi.org/10.1016/j.flowmeasinst.2015.10.006.
    Gholami, A., Bonakdari, H., Zaji, A.H., Akhtari, A.A., 2015b. Simulation of open channel bend characteristics using computational fluid dynamics and artificial neural networks. Engineering Applications of Computational Fluid Mechanics (EACFM) 9(1), 355−369. http://dx.doi.org/10.1080/19942060.2015.1033808.
    Gholami, A., Bonakdari, H., Zaji, A.H., Michelson, D.G., Akhtari, A.A., 2016. Improving the performance of multi-layer perceptron and radial basis function models with a decision tree model to predict flow variables in a sharp 90° bend. Applied Soft Computing 48, 563−583. http://dx.doi.org/10.1016/j.asoc.2016.07.035.
    Jing, H.F., Li, C.G., Guo, Y.K., Zhu, L.J., Li, Y.T., 2014. Numerical modeling of flow in continuous bends from Daliushu to Shapotou in Yellow River. Water Science and Engineering 7(2), 194−207. http://dx.doi.org/10.3882/j.issn.1674-2370.2014.02.007.
    Leschziner, M.A., Rodi, W., 1979. Calculation of strongly curved open channel flow. Journal of the Hydraulics Division 105(10), 1297−1314.
    Lien, H.C., Hsieh, T.Y., Yang, J.C., Yeh, K.C., 1999. Bend-flow simulation using 2D depth-averaged model. Journal of Hydraulic Engineering 125(10), 1097−1108. http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1097).
    Liu, X., García, M.H., 2008. Three-dimensional numerical model with free water surface and mesh deformation for local sediment scour. Journal of Waterway, Port, Coastal, and Ocean Engineering 134(4), 203−217. http://dx.doi.org/10.1061/(ASCE)0733-950X (2008)134:4(203).
    Naji, M.A., Ghodsian, M., Vaghefi, M., Panahpur, N., 2010. Experimental and numerical simulation of flow in a 90° bend. Flow Measurement and Instrumentation 21(3), 292−298. http://dx.doi.org/10.1016/j.flowmeasinst.2010.03.002.
    Ottevanger, W., Blanckaert, K., Uijttewaal, W.S.J., 2011. Processes governing the flow redistribution in sharp river bends. Geomorphology 163−164, 45−55. http://dx.doi.org/10.1016/j.geomorph.2011.04.049.
    Ramamurthy, A., Han, S., Biron, P., 2013. Three-dimensional simulation parameters for 90° open channel bend flows. Journal of Computing in Civil Engineering 27(3), 282−291. http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000209.
    Rozovskii, I.L., 1961. Flow of Water in Bends of Open Channels. Academy of Sciences of the Ukrainian SSR, Kiev.
    Steffler, P.M., Rajartnam, N., Peterson, A.W., 1985. Water surface change of channel curvature. Journal of Hydraulic Engineering 111(5), 866−870. http://dx.doi.org/10.1061/(ASCE)0733-9429(1985)111:5(866).
    Sui, J., Fang, D., Karney, B.W., 2006. An experimental study into local scour in a channel caused by a 90° bend. Canadian Journal of Civil Engineering 33(7), 902−911. http://dx.doi.org/10.1139/l06-037.
    Versteeg, H.K., Malalaskera, W., 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed. Longman Scientific and Technical, Cambridge.
    Yakhot, V., Orszag, S.A., 1986. Renormalization group analysis of turbulence, I: Basic theory. Journal of Scientific Computing 1(1), 13−51. http://dx.doi.org/10.1007/BF01061452.
    Yan, J., Tang, H.W., Xiao, Y., Li, K.J., Tian, Z.J., 2011. Experimental study on influence of boundary on location of maximum velocity in open channel flows. Water Science and Engineering 4(2), 185−191. http://dx.doi.org/10.3882/j.issn.1674-2370.2011.02.006.
    Ye, J., McCorquodale, J.A., 1998. Simulation of curved open channel flows by 3D hydrodynamic model. Journal of Hydraulic Engineering 124(7), 687−698. http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:7(687).
    Zhang, M.L., Shen, Y.M., 2008. Three dimensional simulation of meandering river based on 3-D k-ε (RNG) turbulence model. Journal of Hydrodynamics 20(4), 448−455. http://dx.doi.org/10.1016/S1001-6058(08)60079-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1077) PDF downloads(1702) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return