Citation: | He Yang, Shou-yi Xie, Jean Secq, Jian-fu Shao. 2017: Experimental study and modeling of hydromechanical behavior of concrete fracture. Water Science and Engineering, 10(2): 97-106. doi: 10.1016/j.wse.2017.06.002 |
Abbas, A., Carcasses, M., Olivier, J.P., 1999. Gas permeability of concrete in relation to its degree of saturation. Materials and Structures 32(1), 3-8. http://dx.doi.org/10.1007/BF02480405.
|
Bandis, S., 1980. Experimental Studies of Scale Effects on Shear Strength and Deformation of Rock Joints. Ph. D. Dissertation. University of Leeds, Leeds.
|
Bandis, S.C., Lumsden, A.C., Barton, N.R., 1983. Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics 20(6), 249-268. http://dx.doi.org/10.1016/0148-9062(83)90595-8.
|
Baroghel-Bouny, V., Mainguy, M., Lassabatere, T., Coussy, O., 1999. Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious material. Cement and Concrete Research 29(8), 1225-1238. http://dx.doi.org/10.1016/S0008-8846(99)00102-7.
|
Bart, M., 2000. Modeling of Hydromechanical Behavior of Fractured Rock Mass. Ph. D. Dissertation. University of Lille, Lille. (in French)
|
Bart, M., Shao, J.F., Lydzba, D., Haji-Sotoudeh, M., 2004. Coupled hydromechanical modeling of rock fractures under normal stress. Canadian Geotechnical Journal 41(4), 686-697. http://dx.doi.org/10.1139/t04-018.
|
Barton, N., Choubey, V., 1977. The shear strength of rock joints in theory and practice. Rock Mechanics 10(1), 1-54. http://dx.doi.org/10.1007/BF01261801.
|
Barton, N., Bandis, S., Bakhtar, K., 1985. Strength, deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences and Geomechanics 22(3), 121-140. http://dx.doi.org/10.1016/0148-9062(85)93227-9.
|
Benjelloun, Z.H., 1991. Experimental Study and Modeling of Hydromechanical Behavior of Rock Joints. Ph. D. Dissertation. University of Grenoble, Grenoble (in French).
|
Bourgeois, F., Burlion, N., Shao, J.F., 2002. Modelling of elastoplastic damage in concrete due to desiccation shrinkage. International Journal for Numerical and Analytical Methods in Geomechanics 26(8), 759-774. http://dx.doi.org/10.1002/nag.221.
|
Camps, G., 2008. Study of Chemical-mechanical Interactions for the Simulation of Life Cycle of a Waste Disposal Component in Concrete. Ph. D. Dissertation. University of Toulouse, Toulouse (in French).
|
Chen, L., Duveau, G., Shao, J.F., 2011. Modelling of plastic deformation and damage in cement-based material subjected to desiccation. International Journal for Numerical and Analytical Methods in Geomechanics. 35(17), 1877-1898. http://dx.doi.org/10.1002/nag.985.
|
Choinska, M., Khelidj, A., Chatzigeorgiou, G., Pijaudier-Cabot, G., 2007. Effects and interactions of temperature and stress level related damage on permeability of concrete. Cement and Concrete Research 37(1), 79-88. http://dx.doi.org/10.1016/j.cemconres.2006.09.015.
|
Gentier, S., 1986. Morphology and Hydromechanical Behavior of a Natural Fracture in Granite under Normal Stress. Ph.D. Dissertation. University of Orleans, Orleans (in French).
|
Hoseini, M., Bindiganavile, V., Banthia, N., 2009. The effect of mechanical stress on permeability of concrete: A review. Cement and Concrete Composites 31(4), 213-220. http://dx.doi.org/10.1016/j.cemconcomp.2009.02.003.
|
Kermani, A., 1991. Permeability of stressed concrete. Building Research and Information 19(6), 360-366. http://dx.doi.org/10.1080/09613219108727156.
|
Liu, Z.B., Xie, S.Y., Shao, J.F., Conil, N., 2015. Effects of deviatoric stress and structural anisotropy on compressive creep behavior of a clayey rock. Applied Clay Science 114, 491-496. http://dx.doi.org/10.1016/j.clay.2015.06.039.
|
Liu, Z.B., Shao, J.F., Liu, T.G., Xie, S.Y., Conil, N., 2016. Gas permeability evolution mechanism during creep of a low permeable claystone. Applied Clay Science 129, 47-53. http://dx.doi.org/10.1016/j.clay.2016.04.021.
|
Misra, A., 2002. Effect of asperity damage on shear behavior of single fracture. Engineering Fracture Mechanics 69(17), 1997-2014. http://dx.doi.org/10.1016/S0013-7944(02)00073-5.
|
Moreno, L., Tsang, C.F., Tsang, Y., Neretnieks, I., 1990. Some anomalous features of flow and solute transport arising from fracture aperture variability. Water Resour. Res. 26(10), 2377-2391. http://dx.doi.org/10.1029/WR026i010p02377.
|
Nguyen, T.S., Selvadurai, A.P.S., 1998. A model for coupled mechanical and hydraulic behavior of a rock joint. International Journal for Numerical and Analytical Methods in Geomechanics 22(1), 29-48. http://dx.doi.org/10.1002/(SICI)1096-9853(199801)22:1<29::AID-NAG907>3.0.CO;2-N.
|
Olsson, W.A., Brown, S.R., 1993. Hydromechanical response of a fracture undergoing compression and shear. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 30(7), 845-851. http://dx.doi.org/10.1016/0148-9062(93)90034-B.
|
Picandet, V., Khelidj, A., Bastian, G., 2001. Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete. Cement and Concrete Research 31(11), 1525-1532. http://dx.doi.org/10.1016/S0008-8846(01)00546-4.
|
Plesha, M.E., 1987. Constitutive models for rock discontinuities with dilatancy and surface degradation. International Journal for Numerical and Analytical Methods in Geomechanics 11(4), 345-362. http://dx.doi.org/10.1002/nag.1610110404.
|
Shao, J., 2016. Experimental studies of hydromechanical behavior of concrete fractures: A state-of-the art. In: Vehmas, T., Holt, E., eds., WP1 Experimental Studies: State of the Art Literature Review (M09- Feb 2016). The European Commission, Brussels, pp.113-118.
|
Simo, J.C., Hughes, T.J.R., 1998. Computational Inelasticity. Springer-Verlag, New York. http://dx.doi.org/10.1007/b98904.
|
Sugiyama, T., Bremner, T.W., Holm, T.A., 1996. Effect of stress on gas permeability in concrete. ACI Materials Journal 93(5), 443-450.
|
Tsang, Y.W., Witherspoon, P.A., 1981. Hydromechanical behavior of a deformable rock fracture subject to normal stress. Journal of Geophysical Research: Solid Earth 86(B10), 9287-9298. http://dx.doi.org/10.1029/JB086iB10p09287.
|
Tsang, Y.W., Witherspoon, P.A., 1983. The dependence of fracture mechanical and fluid flow properties of fracture roughness and simple size. Journal of Geophysical Research: Solid Earth 88(B3) 2359-2366. http://dx.doi.org/10.1029/JB088iB03p02359.
|
Wang, K.J., Jansen, D.C., Shah, S.P., Karr, A.F., 1997. Permeability study of cracked concrete. Cement and Concrete Research 27(3), 381-393. http://dx.doi.org/10.1016/S0008-8846(97)00031-8.
|
Yeo, I.W., De Freitas, M.H., Zimmerman, R.W., 1998. Effect of shear displacement on the aperture and permeability of a rock fracture. International Journal of Rock Mechanics and Mining Sciences 35(8), 1051-1070. http://dx.doi.org/10.1016/S0148-9062(98)00165-X.
|
Yurtdas, I., Xie, S.Y., Burlion, N., Shao, J.F., Saint-Marc, J., Garnier, A., 2011. Deformation and permeability evolution of petroleum cement paste subjected to chemical degradation under temperature. Transport in Porous Media 86(3), 719-736. http://dx.doi.org/10.1007/s11242-010-9648-y.
|