Volume 10 Issue 2
Apr.  2017
Turn off MathJax
Article Contents
Yong-xing Hong, Wen Chen, Ji Lin, Jian Gong, Hong-da Cheng. 2017: Thermal field in water pipe cooling concrete hydrostructures simulated with singular boundary method. Water Science and Engineering, 10(2): 107-114. doi: 10.1016/j.wse.2017.06.004
Citation: Yong-xing Hong, Wen Chen, Ji Lin, Jian Gong, Hong-da Cheng. 2017: Thermal field in water pipe cooling concrete hydrostructures simulated with singular boundary method. Water Science and Engineering, 10(2): 107-114. doi: 10.1016/j.wse.2017.06.004

Thermal field in water pipe cooling concrete hydrostructures simulated with singular boundary method

doi: 10.1016/j.wse.2017.06.004
Funds:  This work was supported by the National Natural Science Foundation of China (Grants No. 11572111 and 11372097) and the 111 Project (Grant No. B12122).
More Information
  • Corresponding author: Ji Lin
  • Received Date: 2016-11-14
  • Rev Recd Date: 2017-02-13
  • The embedded water pipe system is often used as a standard cooling technique during the construction of large-scale mass concrete hydrostructures. The prediction of the temperature distribution considering the cooling effects of embedded pipes plays an essential role in the design of the structure and its cooling system. In this study, the singular boundary method, a semi-analytical meshless technique, was employed to analyze the temperature distribution. A numerical algorithm solved the transient temperature field with consideration of the effects of cooling pipe specification, isolation of heat of hydration, and ambient temperature. Numerical results are verified through comparison with those of the finite element method, demonstrating that the proposed approach is accurate in the simulation of the thermal field in concrete structures with a water cooling pipe.

     

  • loading
  • Bruch, J.C., Zyvoloski, G., 1974. Transient two-dimensional heat conduction problems solved by the finite element method. International Journal for Numerical Methods in Engineering 8(3), 481-494. http://dx.doi.org/10.1002/nme.1620080304.
    Chen, S.H., Su, P.F., Shahrour, I., 2011. Composite element algorithm for the thermal analysis of mass concrete: Simulation of cooling pipes. International Journal of Numerical Methods for Heat and Fluid Flow 21(4), 434-447. http://dx.doi.org/10.1108/09615531111123100.
    Chen, W., 2009. Singular boundary method: A novel, simple, meshfree, boundary collocation numerical method. Chinese Journal of Solid Mechanics 30(6), 592-599 (in Chinese).
    Chen, W., Gu, Y., 2012. An improved formulation of singular boundary method. Advances in Applied Mathematics and Mechanics 4(5), 543-558. http://dx.doi.org/10.4208/aamm.11-m11118.
    Chen, W., Zhang, J.Y., Fu, Z.J., 2014. Singular boundary method for modified Helmholtz equations. Engineering Analysis with Boundary Elements 44, 112-119. http://dx.doi.org/10.1016/j.enganabound.2014.02.007.
    Ding, J.X., Chen, S.H., 2013. Simulation and feedback analysis of the temperature field in massive concrete structures containing cooling pipes. Applied Thermal Engineering 61(2), 554-562. http://dx.doi.org/10.1016/j.applthermaleng.2013.08.029.
    Hauser, G., Kempkes, C., Olesen, B.W., 2000. Computer simulation of hydronic heating/cooling system with embedded pipes. In: ASHRAE Winter Meeting, 702-710. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Dallas.
    Kim, J. K., Kim, K.H., Yang, J.K., 2001. Thermal analysis of hydration heat in concrete structures with pipe-cooling system. Computers and Structures 79(2), 163-171. http://dx.doi.org/10.1016/S0045-7949(00)00128-0.
    Kogan, E.A., 1980. Stress relaxation in concrete of massive hydraulic structures. Hydrotechnical Construction 14(9), 916-920. http://dx.doi.org/10.1007/BF02305447.
    Kwak, Y.H., Walewski, J., Sleeper, D., Sadatsafavi, H., 2014. What can we learn from the Hoover Dam project that influenced modern project management. International Journal of Project Management 32(2), 256-264. http://dx.doi.org/10.1016/j.ijproman.2013.04.002.
    Li, J.P., Fu, Z.J., Chen, W., 2016. Numerical investigation on the obliquely incident water wave passing through the submerged breakwater by singular boundary method. Computers and Mathematics with Applications 71(1), 381-390. http:// dx.doi.org/10.1016/j.camwa.2015.11.025.
    Lin, J., Chen, W., Chen, C.S., 2014. Numerical treatment of acoustic problems with boundary singularities by the singular boundary method. Journal of Sound and Vibration 333(14), 3177-3188. http://dx.doi.org/10.1016/j.jsv.2014.02.032.
    Liu, X.H., Zhang, C., Chang, X.L., Zhou, W., Cheng, Y.G., Duan, Y., 2015. Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Applied Thermal Engineering 78, 449-459. http://dx.doi.org/10.1016/j. applthermaleng.2014.12.050.
    Qiang, S., Xie, Z.Q., Zhong, R., 2015. A p-version embedded model for simulation of concrete temperature fields with cooling pipes. Water Science and Engineering 8(3), 248-256. http://dx.doi.org/10.1016/j.wse.2015.08.001.
    Šarler, B., 2009. Solution of potential flow problems by the modified method of fundamental solutions: Formulations with the single layer and the double layer fundamental solutions. Engineering Analysis with Boundary Elements 33(12), 1374-1382. http://dx.doi.org/10.1016/j.enganabound.2009.06.008.
    Sasaki, S., Kono, A., Takahashi, S., 2014. Improvement in prediction accuracy by finite element methods of stretch-formed aluminum alloy sheets with a large aspect ratio. Procedia Engineering 81, 927-932. http://dx.doi.org/10.1016/j.proeng.2014.10.119.
    Sato, T., Ichimiya, J., Ono, N., Hachiya, K., Hashimoto, M., 2005. On-chip thermal gradient analysis and temperature flattening for SoC design. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences 88(12), 3382-3389. http://dx.doi.org/10.1093/ietfec/e88-a.12.3382.
    Wang, F.J., Chen, W., 2016. Accurate empirical formulas for the evaluation of origin intensity factor in singular boundary method using time-dependent diffusion fundamental solution. International Journal of Heat and Mass Transfer 103, 360-369. http:// dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.035.
    Wei, X., Chen, W., Sun, L.L., Chen, B., 2015. A simple accurate formula evaluating origin intensity factor in singular boundary method for two-dimensional potential problems with Dirichlet boundary. Engineering Analysis with Boundary Elements 58, 151-165. http://dx.doi.org/10.1016/j.enganabound.2015.04.010.
    Wei, X., Chen, B., Chen, S.S., Yin, S.H., 2016. An ACA-SBM for some 2D steady-state heat conduction problems. Engineering Analysis with Boundary Elements 71, 101-111. http://dx.doi.org/10.1016/j.enganabound.2016.07.012.
    Yang, J., Hu, Y., Zuo, Z., Jin, F., Li, Q.B., 2012. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes. Applied Thermal Engineering 35(1), 145-156. http://dx.doi.org/10.1016/j.applthermaleng.2011.10.016.
    Zhang, X.X., Tao, X.M., Yick, K.L., Wang, X.C., 2004. Structure and thermal stability of microencapsulated phase-change materials. Colloid and Polymer Science 282(4), 330-336. http://dx.doi.org/10.1007/s00396-003-0925-y.
    Zhu, B.F., 1991. Equivalent equation of heat conduction in mass concrete considering the effect of pipe cooling. Journal of Hydraulic Engineering 36(3), 28-34. http://dx.doi.org/10.13243/j.cnki.slxb.1991.03.004 (in Chinese).
    Zhu, B.F., 1999. Effect of cooling by water flowing in nonmetal pipes embedded in mass concrete. Journal of Construction Engineering and Management 125(1), 61-68. http://dx.doi.org/10.1061/(ASCE)0733-9364(1999)125:1(61).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (832) PDF downloads(1206) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return