Citation: | Zhen-dong Fang, Kai Zhang, Jie Liu, Jun-yu Fan, Zhi-wei Zhao. 2017: Fenton-like oxidation of azo dye in aqueous solution using magnetic Fe3O4-MnO2 nanocomposites as catalysts. Water Science and Engineering, 10(4): 326-333. doi: 10.1016/j.wse.2017.10.005 |
Costa, R.C.C., Moura, F.C.C., Ardisson, J.D., Fabris, J.D., Lago, R.M., 2008. Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Applied Catalysis B: Environmental. 83, 131-139. http://dx.doi.org/10.1016/j.apcatb.2008.01.039.
|
Cui, H., Huang, H., Fu, M., Yuan, B., Pearl, W., 2011. Facile synthesis and catalytic properties of single crystalline β-MnO2 nanorods. Catalysis Communications. 12(14), 1339-1343. http://dx.doi.org/10.1016/j.catcom.2011.05.013.
|
Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., Yan, X., 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology. 2(9), 577-583. http://dx.doi.org/10.1038/nnano.2007.260.
|
Gogoi, A., Navgire, M., Sarma, K.C., Gogoi, P., 2017. Fe3O4-CeO2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol. Chemical Engineering Journal. 311, 153-162. http://dx.doi.org/10.1016/j.cej.2016.11.086.
|
He, J., Yang, X., Men, B., Wang, D., 2016. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. Journal of Environmental Sciences. 39, 97-109. http://dx.doi.org/ 10.1016/j.jes.2015.12.003.
|
Hou, L., Zhang, Q., Jérôme, F., Duprez, D., Zhang, H., Royer, S., 2014. Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Applied Catalysis B: Environmental. 144, 739-749. http://dx.doi.org/10.1016/j.apcatb.2013.07.072.
|
Huang, R., Liu, Y., Chen, Z., Pan, D., Li, Z., Wu, M., Shek, C., Wu, C.M.L., Lai, J.K.L., 2015. Fe-species-loaded mesoporous MnO2 superstructural requirements for enhanced catalysis. ACS Applied Materials & Interfaces. 7(7), 3949-3959. http://dx.doi.org/10.1021/am505989j.
|
Jaafarzadeh, N., Kakavandi, B., Takdastan, A., Kalantary, R.R., Azizi, M., Jorfi, S., 2015. Powder activated carbon/Fe3O4 hybrid composite as a highly efficient heterogeneous catalyst for Fenton oxidation of tetracycline: Degradation mechanism and kinetic. RSC Advances. 5(103), 84718-84728. http://dx.doi.org/10.1039/C5RA17953J.
|
Kim, E., Oh, D., Lee, C., Gong, J., Kim, J., Chang, Y., 2017. Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior. Catalysis Today. 282, 71-76. http://dx.doi.org/10.1016/j.cattod.2016.03.034.
|
Liu, J., Zhao, Z., Shao, P., Cui, F., 2015a. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation. Chemical Engineering Journal. 262, 854-861.
|
Liu, J., Zhao, Z., Ding, Z., Fang, Z., Cui, F., 2016. Degradation of 4-chlorophenol in a Fenton-like system using Au-Fe3O4 magnetic nanocomposites as the heterogeneous catalyst at near neutral conditions. RSC Advances. 6(58), 53080-53088. http://dx.doi.org/10.1039/C6RA10929B.
|
Liu, J., Zhou, J., Ding, Z., Zhao, Z., Xu, X., Fang, Z., 2017. Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4 for degradation of azo dye. Ultrasonics Sonochemistry. 34, 953-959. http://dx.doi.org/10.1016/j.ultsonch.2016.08.005.
|
Liu, W., Wang, Y., Ai, Z., Zhang, L., 2015b. Hydrothermal synthesis of FeS2 as a high-efficiency Fenton reagent to degrade alachlor via superoxide-mediated Fe(II)/Fe(III) cycle. ACS Applied Materials & Interfaces. 7(51), 28534–28544. http://dx.doi.org/10.1021/acsami.5b09919.
|
Luo, W., Zhu, L., Wang, N., Tang, H., Cao, M., She, Y., 2010. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environmental Science & Technology. 44(5), 1786–1791. http://dx.doi.org/10.1021/es903390g.
|
Munoz, M., de Pedro, Z.M., Casas, J.A., Rodriguez, J.J., 2015. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation: A review. Applied Catalysis B: Environmental. 176–177, 249–265. http://dx.doi.org/10.1016/j.apcatb.2015.04.003.
|
Nidheesh, P.V., 2015. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. RSC Advances. 5(51), 40552–40577. http://dx.doi.org/10.1039/C5RA02023A.
|
Pan, W., Zhang, G., Zheng, T., Wang, P., 2015. Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irradiation. RSC Advances. 5(34), 27043–27051. http://dx.doi.org/10.1039/C4RA14516J.
|
Pignatello, J.J., Oliveros, E., MacKay, A., 2006. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology. 36(1), 1–84. http://dx.doi.org/10.1080/10643380500326564.
|
Ramirez, J.H., Costa, C.A., Madeira, L.M., Mata, G., Vicente, M.A., Rojas-Cervantes, M.L., Martín-Aranda, R.M., 2007. Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental. 71(1), 44–56. http://dx.doi.org/10.1016/j.apcatb.2006.08.012.
|
Saputra, E., Muhammad, S., Sun, H., Ang, H.M., Tadé, M.O., Wang, S., 2013a. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environmental Science & Technology. 47(11), 5882–5887. http://dx.doi.org/10.1021/es400878c.
|
Saputra, E., Muhammad, S., Sun, H., Ang, H., Tadé, M.O., Wang, S., 2013b. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. Journal of Colloid and Interface Science. 407, 467–473. http://dx.doi.org/10.1016/j.jcis.2013.06.061.
|
Segura, Y., Martínez, F., Melero, J.A., Molina, R., Chand, R., Bremner, D.H., 2012. Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol. Applied Catalysis B: Environmental. 113–114, 100–106. http://dx.doi.org/10.1016/j.apcatb.2011.11.024.
|
Soon, A.N., Hameed, B.H., 2011, Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination. 269(1–3), 1–16. http://dx.doi.org/10.1016/j.desal. 2010.11.002.
|
Wang, H., Zhao, Y., Su, Y., Li, T., Yao, M., Qin, C., 2017. Fenton-like degradation of 2,4-dichlorophenol using calcium peroxide particles: Performance and mechanisms. RSC Advances. 7(8), 4563–4571. http://dx.doi.org/10.1039/ C6RA26754H.
|
Wang, N., Zhu, L., Lei, M., She, Y., Cao, M., Tang, H., 2011. Ligand-induced drastic enhancement of catalytic activity of nano-BiFeO3 for oxidative degradation of bisphenol A. ACS Catalysis. 1(10), 1193–1202. http://dx.doi.org/10.1021/cs2002862.
|
Xing, S., Zhou, Z., Ma, Z., Wu, Y., 2011. Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2. Applied Catalysis B: Environmental. 107(3–4), 386–392. http://dx.doi.org/10.1016/j.apcatb.2011.08.002.
|
Xu, L., Wang, J., 2011. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials. 186(1), 256–264. http://dx.doi.org/10.1016/ j.jhazmat.2010.10.116.
|
Xu, L., Wang, J., 2012. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environmental Science & Technology. 46(18), 10145–10153. http://dx.doi.org/10.1021/es300303f.
|
Yan, J., Lei, M., Zhu, L., Anjum, M.N., Zou, J., Tang, H., 2011. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. Journal of Hazardous Materials. 186(2–3), 1398–1404. http://dx.doi.org/10.1016/j.jhazmat.2010.12.017.
|
Yin, R., Guo, W., Zhou, X., Zheng, H., Du, J., Wu, Q., Chang, J., Ren, N., 2016. Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles: Catalytic performance and degradation mechanism. RSC Advances. 6(23), 19265–19270. http://dx.doi.org/10.1039/C5RA25994K.
|
Zhang, G., Gao, Y., Zhang, Y., Guo, Y., 2010. Fe2O3-pillared rectorite as an efficient and stable Fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environmental Science & Technology. 44(16), 6384–6389. http://dx.doi.org/10.1021/es1011093.
|
Zhang, S., Zhao, X., Niu, H., Shi, Y., Cai, Y., Jiang, G., 2009. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. Journal of Hazardous Materials. 167(1–3), 560–566. http://dx.doi.org/10.1016/j.jhazmat.2009.01.024.
|
Zhang, T., Zhu, H., Croué, J., 2013. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism. Environmental Science & Technology. 47(6), 2784–2791. http://dx.doi.org/10.1021/es304721g.
|
Zhang, W., Yang, Z., Wang, X., Zhang, Y., Wen, X., Yang, S., 2006. Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catalysis Communications. 7(6), 408–412. http://dx.doi.org/10.1016/j.catcom.2005.12.008.
|
Zhao, Z., Liu, J., Cui, F., Feng, H., Zhang, L., 2012. One pot synthesis of tunable Fe3O4-MnO2 core-shell nanoplates and their applications for water purification. Journal of Materials Chemistry. 22(18), 9052–9057. http://dx.doi.org/10.1039/C2JM00153E.
|