Citation: | Jing Li, Zhan-bin Li, Meng-jing Guo, Peng Li, Sheng-dong Cheng. 2017: Effects of urban grass coverage on rainfall-induced runoff in Xi’an loess region in China. Water Science and Engineering, 10(4): 320-325. doi: 10.1016/j.wse.2017.12.001 |
Argent, N., Rolley, F., Walmsley, J., 2008. The sponge city hypothesis, does it hold water? Australian Geographer, 39(2),109-130. https://doi.org/10.1080/00049180802056807.
|
Blanco, C.H, Gantzer, C.J., Anderson, S.H., Alberts, E.E., Thompson, A.L., 2004. Grass barrier and vegetative filter strip effectiveness in reducing runoff, sediment, nitrogen, and phosphorus loss. Soil Science Society of America Journal, 68(5), 1670-1678. https://doi.org/10.2136/sssaj2004.1670.
|
Cerdà, A., 2001. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52(1), 59–68. https://doi.org/10.1046/j.1365-2389.2001.00354.x.
|
Cerdà, A., Keesstra, S., Burguet, M., Pereira, P., Lucasborja, M.E., Martinezmurillo, J.F., 2016. Seasonal changes of the infiltration rates in urban parks of Valencia City, Eastern Spain. In: Geophysical Research Abstracts. EGU General Assembly Conference, p. 18110.
|
Cuo, L., Lettenmaier, D.P., Mattheussen, B.V., Storck, P., Wiley, M., 2010. Hydrologic prediction for urban watersheds with the distributed hydrology-soil-vegetation model. Hydrological Processes, 22(21), 4205-4213. https://doi.org/10.1002/hyp.7023.
|
Dobbs, C., Nitschke, C.R., Kendal, D., 2014. Global drivers and tradeoffs of three urban vegetation ecosystem services. Plos One, 9(11), e113000. https://doi.org/10.1371/journal.pone.0113000.
|
Dunne, T., Zhang, W., Aubry, B.F., 1991. Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resources Research, 27 (9), 2271-2285. https://doi.org/10.1029/91WR01585.
|
Dwivedi, R.S., Sreenivas, K., 2002. The vegetation and waterlogging dynamics as derived from spaceborne multispectral and multitemporal data. International Journal of Remote Sensing, 23(14), 2729-2740. https://doi.org/10.1080/01431160110076234.
|
Ellis, J.B., Revitt, D.M., Lundy, L., 2012. An impact assessment methodology for urban surface runoff quality following best practice treatment. Science of the Total Environment, 416, 172-181. https://doi.org/10.1016/j.scitotenv.2011.12.003.
|
Fletcher, T.D., Andrieu, H., Hamel, P., 2013. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources, 51(1), 261–279. https://doi.org/10.1016/j.advwatres.2012.09.001.
|
Han, W.S., Burian, S.J., 2009. Determining effective impervious area for urban hydrologic modeling. Journal of Hydrologic Engineering, 14(2), 111-120. https://doi.org/10.1061/(ASCE)1084-0699(2009)14:2(111).
|
Jacobson, C.R., 2011. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of Environmental Management, 92(6), 1438-1448. https://doi.org/10.1016/j.jenvman.2011.01.018.
|
Juncosa, M.N., Matlin, K.S., Holdcraft, R.W., Nirmalanandhan, V.S., Butler, D.L., 2007. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Engineering, 13(6), 1219-1226. https://doi.org/10.1089/ten.2006.0339.
|
Li, C., 2012. Ecohydrology and good urban design for urban storm water-logging in Beijing, China. Ecohydrology Hydrobiology, 12(4), 287-300. https://doi.org/10.2478/v10104-012-0029-8.
|
Liu, C.M., Zhang, Y.Y., Wang, Z.G., Wang, Y.L., Bai, P., 2016. The LID pattern for maintaining virtuous water cycle in urbanized area: A preliminary study of planning and techniques for sponge city. Journal of Natural Resources, 31(5), 719-731. https://doi.org/10.11849/zrzyxb.20151294 (in Chinese).
|
Marques, M.J., Bienes, R., Jiménez, L., Pérez-Rodríguez, R., 2007. Effect of vegetal cover on runoff and soil erosion under light intensity events: Rainfall simulation over USLE plots. Science of the Total Environment, 378(1-2), 161-165. https://doi.org/10.1016/j.scitotenv.2007.01.043.
|
Mason, D.C., Speck, R., Devereux, B., Schumann, J.P., Neal, J.C., Bates, P.D., 2010. Flood detection in urban areas using TerraSAR-X. IEEE Transactions on Geoscience & Remote Sensing, 48(2), 882-894. https://doi.org/10.1109/TGRS.2009.2029236.
|
Melville, N., Morgan, R.P.C., 2006. The influence of grass density on effectiveness of contour grass strips for control of soil erosion on low angle slopes. Soil Use & Management, 17(4), 278-281. https://doi.org/10.1111/j.1475-2743.2001.tb00038.x.
|
Miller, J.D., Kim, H., Kjeldsen, T.R., Packman, J., Grebby, S., Dearden, R., 2014. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. Journal of Hydrology, 515, 59-70. https://doi.org/10.1016/j.jhydrol.2014.04.011.
|
Mitchell, M.G.E., Wu, D., Johansen, K., Maron, M., McAlpine, C., Rhodes, J.R., 2016. Landscape structure influences urban vegetation vertical structure. Journal of Applied Ecology, 53(5), 1477-1488. https://doi.org/10.1111/1365-2664.12741.
|
Morse, C.C., Huryn, A.D., Cronan, C., 2003. Impervious surface area as a predictor of the effects of urbanization on stream insect communities in Maine, USA. Environmental Monitoring and Assessment, 89(1), 95-127. https://doi.org/10.1023/A:1025821622411.
|
Pan, C.Z., Shangguan, Z.P., 2006. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology, 331(1-2), 178-185. https://doi.org/10.1016/j.jhydrol.2006.05.011.
|
Piekarczyk, J., Kazmierowski, C., Krolewicz, S., 2012. Relationships between soil properties of the abandoned fields and spectral data derived from the advanced spaceborne thermal emission and reflection radiometer (ASTER). Advances in Space Research, 49(2), 280-291. https://doi.org/10.1016/j.asr.2011.09.010.
|
Pitt, R., Chen, S.-E., Clark, S.E., Swenson, J., Ong, C.K., 2008. Compaction's impacts on urban storm-water infiltration. Journal of Irrigation & Drainage Engineering, 134(5), 652-658. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:5(652).
|
Robinson, S.L., Lundholm, J.T., 2012. Ecosystem services provided by urban spontaneous vegetation. Urban Ecosystems, 15(3), 545-557. https://doi.org/10.1007/s11252-012-0225-8.
|
Savva, Y., Szlavecz, K., Pouyat, R.V., Groffman, P.M., Heisler, G., 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal, 74(2), 469-480. https://doi.org/10.2136/sssaj2009.0107.
|
Scholz, M., Yazdi, S.K., 2009. Treatment of road runoff by a combined storm water treatment, detention and infiltration system. Water, Air, & Soil Pollution, 198(1-4), 55-64. https://doi.org/10.1007/s11270-008-9825-6.
|
Sheets, V.L., Manzer, C.D., 1991. Affect, cognition, and urban vegetation: Some effects of adding trees along city streets. Environment & Behavior, 23(3), 285-304. https://doi.org/10.1177/0013916591233002.
|
Susca, T., Gaffin, S.R., Dell'Osso, G.R., 2011. Positive effects of vegetation, urban heat island and green roofs. Environmental Pollution, 159(8), 2119-2126. https://doi.org/10.1016/j.envpol.2011.03.007.
|
Wang, L.Z., Lyons, J., Kanehl, P., Bannerman, R., 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management, 28(2), 255-266. https://doi.org/10.1007/s0026702409.
|
Yang, J.C., Wang, Z.H., 2014. Physical parameterization and sensitivity of urban hydrological models: Application to green roof systems. Building and Environment, 75, 250-263. https://doi.org/10.1016/j.buildenv.2014.02.006.
|
Yu, D., Lane, S.N., 2006. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, Part 1: Mesh resolution effects. Hydrological Processes, 20(7), 1541-1565. https://doi.org/10.1002/hyp.5935.
|
Zhao, X.G., Wu, X.M., Chen, X.H., 2004. Urban vegetation investigation in Xi’an City. Journal of Arid Land Resources & Environment, 18(2), 86-91. https://doi.org/1003-7578(2004) 02-086-06 (in Chinese).
|
Zoppou, C., 2001. Review of urban storm water models. Environmental Modelling and Software, 16(3), 195-231. https://doi.org/10.1016/S1364-8152(00)00084-0.
|