Citation: | Jing-ming Hou, Run Wang, Hai-xiao Jing, Xia Zhang, Qiu-hua Liang, Yan-yan Di. 2017: An efficient dynamic uniform Cartesian grid system for inundation modeling. Water Science and Engineering, 10(4): 267-274. doi: 10.1016/j.wse.2017.12.004 |
Ata, R., Pavan, S., Khelladi, S., Toro, E.F., 2013. A weighted average flux (WAF) scheme applied to shallow water equations for real-life applications. Advances in Water Resources, 62(4), 155-172. https://doi.org/10.1016/j.advwatres.2013.09.019.
|
Bates, P.D., Hervouet, J.M., 1999. A new method for moving-boundary hydrodynamic problems in shallow water. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 455(1988), 3107-3128. https://doi.org/10.1098/rspa.1999.0442.
|
Bates, P.D., Horritt, M.S., Fewtrell, T.J., 2010. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1–2), 33-45. https://doi.org/10.1016/j.jhydrol.2010.03.027.
|
Bates, P.D., 2012. Integrating remote sensing data with flood inundation models: How far have we got? Hydrological Processes, 26(16), 2515–2521. https://doi.org/10.1002/hyp.9374.
|
Bermudez, A., Vazquez, M.E., 1994. Upwind methods for hyperbolic conservation laws with source terms. Computers & Fluids, 23(8), 1049-1071. https://doi.org/10.1016/0045-7930(94)90004-3.
|
Delis, A.I., Kazolea, M., Kampanis, N.A., 2008. A robust high-resolution finite volume scheme for the simulation of long waves over complex domains. International Journal for Numerical Methods in Fluids, 56(4), 419-452. https://doi.org/10.1002/fld.1537.
|
Delis, A.I., Nikolos, I.K., 2013. A novel multidimensional solution reconstruction and edge-based limiting procedure for unstructured cell-centered finite volumes with application to shallow water dynamics. International Journal for Numerical Methods in Fluids,71(5), 584–633. https://doi.org/10.1002/fld.3674.
|
George, D.L., Leveque, R.J., 2008. High-resolution methods and adaptive refinement for tsunami propagation and inundation. Hyperbolic Problems: Theory, Numerics, Applications. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-75712-2_52.
|
Guan, M., Wright, N.G., Sleigh, A., 2014. 2D process-based morphodynamic model for flooding by noncohesive dyke breach. Journal of Hydraulic Engineering, 140(7), 44-51. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000861.
|
Hervouet, J., 2000. A high resolution 2-D dam-break model using parallelization. Hydrological Processes, 14(13), 2211-2230. https://doi.org/10.1002/1099-1085(200009)14:13<2211::AID-HYP24>3.0.CO;2-8.
|
Hou, J., Liang, Q., Simons, F., Hinkelmann, R., 2013a. A stable 2D unstructured shallow flow model for simulations of wetting and drying over rough terrains. Computers & Fluids, 82(17), 132-147. https://doi.org/10.1016/j.compfluid.2013.04.015.
|
Hou, J., Liang, Q., Simons, F., Hinkelmann, R., 2013b. A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment. Advances in Water Resources, 52(2), 107-131. https://doi.org/10.1016/j.advwatres.2012.08.003.
|
Hou, J., Simons, F., Mahgoub, M., Hinkelmann, R., 2013c. A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography. Computer Methods in Applied Mechanics & Engineering, 257(15), 126–149. https://doi.org/10.1016/j.cma.2013.01.015.
|
Hrdinka, T., Novický, O., Hanslík, E., Rieder, M., 2012. Possible impacts of floods and droughts on water quality. Journal of Hydro-environment Research, 6(2), 145-150. https://doi.org/10.1016/j.jher.2012.01.008.
|
Jeong, W., Yoon, J.S., Cho, Y.S., 2012. Numerical study on effects of building groups on dam-break flow in urban areas. Journal of Hydro-environment Research, 6(2), 91–99. https://doi.org/10.1016/j.jher.2012.01.001.
|
Leer, B.V., 1984. On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe. Siam Journal on Scientific & Statistical Computing, 5(1), 1-20. https://doi.org/10.1137/0905001.
|
Liang, Q., Borthwick, A.G.L., 2009. Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography. Computers & Fluids, 38(2), 221-234. https://doi.org/10.1016/j.compfluid.2008.02.008.
|
Liang, Q., Marche, F., 2009. Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources, 32(6), 873-884. https://doi.org/10.1016/j.advwatres.2009.02.010.
|
Liang, Q., 2010. Flood simulation using a well-balanced shallow flow model. Journal of Hydraulic Engineering, 136(9), 669-675. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000219.
|
Liang, Q., 2011. A structured but non-uniform cartesian grid-based model for the shallow water equations. International Journal for Numerical Methods in Fluids, 66(5), 537–554. https://doi.org/10.1002/fld.2266.
|
Liang, Q., 2012. A simplified adaptive Cartesian grid system for solving the 2D shallow water equations. International Journal for Numerical Methods in Fluids, 69(2), 442–458. https://doi.org/10.1002/fld.2568.
|
Liu, Y., Pender, G., 2013. Carlisle 2005 urban flood event simulation using cellular automata-based rapid flood spreading model. Soft Computing, 17(1), 29-37. https://doi.org/10.1007/s00500-012-0898-1.
|
Ozdemir, H., Sampson, C.C., De Almeida, G.A.M., Bates, P.D., 2013. Evaluating scale and roughness effects in urban flood modelling using terrestrial LiDAR data. Hydrology & Earth System Sciences, 10(5), 5903-5942. https://doi.org/10.5194/hessd-10-5903-2013.
|
Popinet, S., 2011. Quadtree-adaptive tsunami modelling. Ocean Dynamics, 61(9), 1261-1285. https://doi.org/10.1007/s10236-011-0438-z.
|
Popinet, S., 2012. Adaptive modelling of long-distance wave propagation and fine-scale flooding during the tohoku tsunami. Natural Hazards & Earth System Sciences, 12(4), 1213-1227. https://doi.org/10.5194/nhess-12-1213-2012.
|
Pu, J, Cheng, N., Tan, S.K., Shao, S., 2012. Source term treatment of swes using surface gradient upwind method. Journal of Hydraulic Research, 50(2), 145-153. https://doi.org/10.1080/00221686.2011.649838.
|
Sanders, B.F., Schubert, J.E., Detwiler, R.L., 2010. Parbrezo: a parallel, unstructured grid, Godunov-type, shallow-water code for high-resolution flood inundation modeling at the regional scale. Advances in Water Resources, 33(12), 1456-1467. https://doi.org/10.1016/j.advwatres.2010.07.007.
|
Singh, J., Altinakar, M.S., Ding, Y., 2011. Two-dimensional numerical modeling of dam-break flows over natural terrain using a central explicit scheme. Advances in Water Resources, 34(10), 1366-1375. https://doi.org/10.1016/j.advwatres.2011.07.007.
|
Smith, L.S., Liang, Q., 2013. Towards a generalised GPU/CPU shallow-flow modelling tool. Computers & Fluids, 88(12), 334-343. https://doi.org/10.1016/j.compfluid.2013.09.018.
|
Wang, Y., Liang, Q., Kesserwani, G., Hall, J.W., 2011a. A positivity-preserving zero-inertia model for flood simulation. Computers & Fluids,46(1), 505–511. https://doi.org/10.1016/j.compfluid.2011.01.026.
|
Wang, Y., Liang, Q., Kesserwani, G., Hall, J.W., 2011b. Closure to “A 2D shallow flow model for practical dam-break simulations”. Journal of Hydraulic Research, 49(3), 307-316. http://dx.doi.org/10.1080/00221686.2012.727874.
|
Wilson, M.D., Atkinson, P.M., 2003. Sensitivity analysis of a flood inundation model to spatially-distributed friction coefficients obtained using land cover classification of Landsat TM imagery. In: IGARSS 2003. IEEE.
|
Xia, X., Liang, Q., Ming, X., Hou, J., 2017. An efficient and stable hydrodynamic model with novel source term discretisation schemes for overland flow simulations. Water Resources Research, 53, 3730-3759. http://dx.doi.org/10.1002/2016WR020055.
|
Zhou, J.G., Causon, D.M., Ingram, D.M., Mingham, C.G., 2002. Numerical solutions of the shallow water equations with discontinuous bed topography. International Journal for Numerical Methods in Fluids, 38(8), 769-788. http://dx.doi.org/10.1002/fld.243
|