Citation: | Jia-heng Zhao, Ilhan Özgen, Dong-fang Liang, Reinhard Hinkelmann. 2017: Comparison of depth-averaged concentration and bed load flux sediment transport models of dam-break flow. Water Science and Engineering, 10(4): 287-294. doi: 10.1016/j.wse.2017.12.006 |
Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B., 2004. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing. 25(6), 2050–2065. https://doi.org/10.1137/S1064827503431090.
|
Audusse, E., Berthon, C., Chalons, C., Delestre, O., Goutal, N., Jodeau, M., Sainte-Marie, J., Giesselmann, J., Sadaka, G., 2012. Sediment transport modelling: Relaxation schemes for Saint-Venant-Exner and three layer models. ESAIM: Proceedings and Surveys. 38, 78–98. https://doi.org/10.1051/proc/201238005.
|
Bussing, T.R., Murman, E.M., 1988. Finite-volume method for the calculation of compressible chemically reacting flows. AIAA Journal. 26(9), 1070–1078. https://doi.org/10.2514/3.10013.
|
Cao, Z.X., 1999. Equilibrium near-bed concentration of suspended sediment. Journal of Hydraulic Engineering. 125(12), 1270–1278. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1270).
|
Cao, Z.X., Pender, G., Wallis, S., Carling, P., 2004. Computational dam-break hydraulics over erodible sediment bed. Journal of Hydraulic Engineering. 130(7), 689–703. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(689).
|
El Kadi Abderrezzak, K., Paquier, A., 2011. Applicability of sediment transport equilibrium formulas to dam-break flows over movable beds. Journal of Hydraulic Engineering. 137(2), 209–221. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000298.
|
Gallardo, J.M., Carlos, P., Manuel, C., 2007. On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. Journal of Computational Physics. 227(1), 574–601. https://doi.org/10.1016/j.jcp.2007.08.007.
|
Grass, A.J., 1981. Sediment Transport by Waves and Currents. University College, London; Department of Civil Engineering, London.
|
Guan, M.F., Wright, N.G., Sleigh, P.A., 2015. Multimode morphodynamic model for sediment-laden flows and geomorphic impacts. Journal of Hydraulic Engineering. 141(6), 1–24. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000997.
|
Hou, J.M., Liang, Q.H., Simons, F., Hinkelmann, R., 2013a. A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment. Advances in Water Resources, 52, 107–131. https://doi.org/10.1016/j.advwatres.2012.08.003.
|
Hou, J., Simons, F., Hinkelmann, R., 2013b. A new TVD method for advection simulation on 2D unstructured grids. International Journal for Numerical Methods in Fluids. 71(10), 1260–1281. https://doi.org/10.1002/fld.3709.
|
Hudson, J., Sweby, P.K., 2003. Formulations for numerically approximating hyperbolic systems governing sediment transport. Journal of Scientific Computing. 19(1–3), 225–252. https://doi.org/10.1023/A:1025304008907.
|
LeVeque, R.J., 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, New York. https://doi.org/10.1017/CBO9780511791253.
|
Liang, Q.H., 2011. A coupled morphodynamic model for applications involving wetting and drying. Journal of Hydrodynamics, Ser. B, 23(3), 273–281. https://doi.org/10.1016/S1001-6058(10)60113-8.
|
Liu, X., Landry, B.J., Garcia, M.H., 2008. Two-dimensional scour simulations based on coupled model of shallow water equations and sediment transport on unstructured meshes. Coastal Engineering, 55(10), 800–810. https://doi.org/10.1016/j.coastaleng.2008.02.012.
|
Murillo, J., García-Navarro, P., 2010. An exner-based coupled model for two-dimensional transient flow over erodible bed. Journal of Computational Physics. 229(23), 8704–8732. https://doi.org/10.1016/j.jcp.2010.08.006.
|
Simpson, G., Castelltort, S., 2006. Coupled model of surface water flow, sediment transport and morphological evolution. Computers & Geosciences. 32(10), 1600–1614. https://doi.org/10.1016/j.cageo.2006.02.020.
|
Soares-Frazão, S., Zech, Y., 2011. HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water flow on erodible bed. International Journal for Numerical Methods in Fluids. 66(8), 1019–1036. https://doi.org/10.1002/fld.2300.
|
Spinewine, B., 2005. Two-layer Flow Behaviour and the Effects of Granular Dilatancy in Dam-break Induced Sheet-flow. Ph. D. Dissertation. Université catholique de Louvain, Louvain.
|
Spinewine, B., Zech, Y., 2007. Small-scale laboratory dam-break waves on movable beds. Journal of Hydraulic Research. 45(s1), 73–86. https:// doi.org/10.1080/00221686.2007.9521834.
|
Sun, M., Takayama, K., 2003. Error localization in solution-adaptive grid methods. Journal of Computational Physics. 190(1), 346–350. https:// doi.org/10.1016/S0021-9991(03)00278-X.
|
Toro, E.F., Spruce, M., Speares, W., 1994. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves. 4(1), 25–34. https://doi.org/10.1007/BF01414629.
|
Valiani, A., Begnudelli, L., 2006. Divergence form for bed slope source term in shallow water equations. Journal of Hydraulic Engineering, 132(7), 652–665. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:7(652).
|
van Leer, B., 1979. Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov's method. Journal of Computational Physics. 32, 101–136. https://doi.org/10.1016/0021-9991(79)90145-1.
|
Wu, W., Wang, S.S., 2008. One-dimensional explicit finite-volume model for sediment transport. Journal of Hydraulic Research, 46(1), 87–98. https://doi.org/10.1080/00221686.2008.9521846.
|
Wu, W., Marsooli, R., He, Z., 2012. Depth-averaged two-dimensional model of unsteady flow and sediment transport due to noncohesive embankment break/breaching. Journal of Hydraulic Engineering, 138(6), 503–516. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000546.
|