Citation: | Jing-jing Xu, Jing-wen Yang, Pu Zhang, Quan Yuan, Yan-hong Zhu, Yu Wang, Miao-miao Wu, Zheng-mei Wang, Min-dong Chen. 2017: Preparation of 2D square-like Bi2S3-BiOCl heterostructures with enhanced visible light-driven photocatalytic performance for dye pollutant degradation. Water Science and Engineering, 10(4): 334-339. doi: 10.1016/j.wse.2017.12.010 |
Ao, Y.H., Bao, J.Q., Wang, P.F., Wang, C., Hou, J., 2016a. Bismuth oxychloride modified titanium phosphate nanoplates: A new p-n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants. Journal of Colloid and Interface Science. 476, 71–78. http://dx.doi.org/10.1016/j.jcis.2016.05.021.
|
Ao, Y.H., Wang, K.D., Wang, P.F., Wang, C., Hou, J., 2016b. Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation. Applied Catalysis B: Environmental. 194, 157–168. http://dx.doi.org/10.1016/j.apcatb.2016.04.050.
|
Ao, Y.H., Wang, K.D., Wang, P.F., Wang, C., Hou, J., 2016c. Fabrication of novel p-n heterojunction BiOI/La2Ti2O7 composite photocatalysts for enhanced photocatalytic performance under visible light irradiation. Dalton Transactions. 45(19), 7986–7997. http://dx.doi.org/10.1039/c6dt00862c.
|
Bianchi, C.L., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocella, V., Capucci, V., 2014. Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental. 146, 123–130. http://dx.doi.org/10.1016/j.apcatb.2013.02.047.
|
Cao, J., Xu, B.Y., Lin, H.L., Luo, B.D., Chen, S.F., 2012. Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B. Catalysis Communications. 26, 204–208. http://dx.doi.org/10.1016/j.catcom.2012.05.025.
|
Cao, J., Zhou, C.C., Lin, H.L., Xu, B.Y., Chen, S.F., 2013. Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity. Applied Surface Science. 284, 263–269. http://dx.doi.org/10.1016/j.apsusc.2013.07.092.
|
Carey, J.H., Lawrence, J., Tosine, H.M., 1976. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology. 16(6), 697–701.
|
Chen, L., Huang, R., Xiong, M., Yuan, Q., He, J., Jia, J., Yao, M.Y., Luo, S.L., Au, C.T., Yin S.F., 2013. Room-temperature synthesis of flower-like BiOX (X = Cl, Br, I) hierarchical structures and their visible-light photocatalytic activity. Inorganic Chemistry. 52(19), 11118–11125. http://dx.doi.org/10.1021/ic401349j.
|
Cheng, H.F., Huang, B.B., Qin, X.Y., Zhang, X.Y., Dai, Y., 2012. A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chemical Communications. 48(1), 97–99. http://dx.doi.org/10.1039/c1cc15487g.
|
Deng, Z.T., Tang, F.Q., Muscat, A.J., 2008. Strong blue photoluminescence from single-crystalline bismuth oxychloride nanoplates. Nanotechnology. 19(29), 295705–295710. http://dx.doi.org/10.1088/0957-4484/19/29/295705.
|
Ferreira, V.C., Neves, M.C., Hillman, A.R., Monteriro, O.C., 2016. Novel one-pot synthesis and sensitisation of new BiOCl-Bi2S3 nanostructures from DES medium displaying high photocatalytic activity. RSC Advances. 6, 77329–77339. http://dx.doi.org/10.1039/C6RA14474H.
|
Fujishima, A., Honda, K., 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature. 238(5358), 37–38. http://dx.doi.org/10.1038/238037a0.
|
Jiang, S.H., Zhou, K.Q., Shi, Y.Q., Lo, S.M., Xu, H.Y., Hu, Y., Gui, Z., 2014. In situ synthesis of hierarchical flower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity. Applied Surface Science. 290, 313–319. http://dx.doi.org/10.1016/j.apsusc.2013.11.074.
|
Li, G.T., Wong, K.H., Zhang, X.W, Hu, C., Yu, J.C., Chan, R.C.Y., Wong, P.K., 2009. Degradation of Acid Orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere. 76(9), 1185–1191. http://dx.doi.org/10.1016/j.chemosphere.2009.06.027.
|
Liu, Y., Shi, Y.D, Liu, X., Li, H.X., 2017. A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue. Applied Surface Science. 396, 58–66. http://dx.doi.org/10.1016/j.apsusc.2016.11.028
|
Maile, F.J., Pfaff, G., Reynders, P., 2005. Effect pigments: Past, present and future. Progress in Organic Coatings. 54(3), 150–163. http://dx.doi.org/10.1016/j.porgcoat.2005.07.003.
|
Nawaz, M., 2017. Morphology-controlled preparation of Bi2S3-ZnS chloroplast-like structures, formation mechanism and photocatalytic activity for hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry. 332, 326–330. http://dx.doi.org/10.1016/j.jphotochem.2016.09.005.
|
Qin, X.Y., Cheng, H.F., Wang, W.J., Huang, B.B., Zhang, X.Y., Dai, Y., 2013. Three dimensional BiOX (X = Cl, Br and I) hierarchical architectures: Facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation. Materials Letters. 100, 285–288. http://dx.doi.org/10.1016/j.matlet.2013.03.045.
|
Shenawi-Khalil, S., Uvarov, V., Kritsman, Y., Mennes, E., Popov, I., Sasson, Y., 2011. A new family of BiO (ClxBr1 − x) visible light sensitive photocatalysts. Catalysis Communications. 12(12), 1136–1141. http://dx.doi.org/10.1016/j.catcom.2011.03.014.
|
Wang, B., Li, C., Cui, H., Zhang, J.P., Zhai, J., Li, Q., 2014. Shifting mechanisms in the initial stage of dye photodegradation by hollow TiO2 nanospheres. Journal of Materials Science. 49(3), 1336–1344. http://dx.doi.org/10.1007/s10853-013-7817-4.
|
Wang, P.Q., Bai, Y., Liu, J.Y., Fan, Z., Hu, Y.Q., 2012. Facile synthesis and activity of daylight-driven plasmonic catalyser Ag/AgX (X = Cl, Br). IET Micro & Nano Letters. 7(8), 838–841. http://dx.doi.org/10.1049/mnl.2012.0591.
|
Wang, Q.Z., Hui, J., Li, J.J., Cai, Y.X., Yin, S.Q., Wang, F.P., Su, B.T., 2013a. Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation. Applied Surface Science. 283, 577–583. http://dx.doi.org/10.1016/j.apsusc.2013.06.149.
|
Wang, W.J., Cheng, H.F., Huang, B.B., Lin, X.J., Qin, X.Y., Zhang, X.Y., Dai Y., 2013b. Synthesis of Bi2O2CO3/Bi2S3 hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants. Journal of Colloid and Interface Science. 402, 34–39. http://dx.doi.org/110.1016/j.jcis.2013.03.054.
|
Wang, Y.Q., Sun, L., Fugetsu, B., 2013c. Morphology-controlled synthesis of sunlight-driven plasmonic photocatalysts Ag@AgX (X = Cl, Br) with graphene oxide template. Journal of Materials Chemistry A. 1(40), 12536–12544. http://dx.doi.org/10.1039/c3ta12893h.
|
Xia, J.X., Xu, L., Zhang, J., Yin, S., Li, H.M., Xu, H., Di, J., 2013. Improved visible light photocatalytic properties of Fe/BiOCl microspheres synthesized via self-doped reactable ionic liquids. CrystEngComm. 15(46), 10132–10141. http://dx.doi.org/10.1039/C3CE41555D.
|
Xiong, J.Y., Cheng, G, Li, G.F., Qin, F., Chen, R., 2011. Well-crystallized square-like 2D BiOCl nanoplates: Mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Advances. 1(18), 1542–1553. http://dx.doi.org/10.1039/C1RA00335F
|
Ye, P., Xie, J.J., He, Y.M., Zhang, L., Wu, T.H., Wu, Y., 2013. Hydrolytic synthesis of flower-like BiOCl and its photocatalytic performance under visible light. Materials Letters. 108, 168–171.
|
Zhang, J., Xia, J.X., Yin, S., Li, H.M., Xu, H., He, M.Q., Huang, L.Y., Zhang, Q., 2013a. Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 420, 89–95. http://dx.doi.org/10.1016/j.colsurfa.2012.11.054.
|
Zhang, W.D., Zhang, Q., Dong, F.D., 2013b. Visible-light photocatalytic removal of NO in air over BiOX (X = Cl, Br, I) single-crystal nanoplates prepared at room temperature. Industrial & Engineering Chemistry Research. 52(20), 6740–6746. http://dx.doi.org/10.1021/ie400615f.
|