Citation: | Lin Yuan, Hong-guang Sun, Yong Zhang, Yi-ping Li, Bing-qing Lu. 2018: Statistical description of depth-dependent turbulent velocity measured in Taihu Lake, China. Water Science and Engineering, 11(3): 243-249. doi: 10.1016/j.wse.2018,09.005 |
Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., Succi, S., 1993. Extended self-similarity in turbulent flows. Physical Review E, 48(1), R29-R32. https://doi.org/10.1103/physreve.48.r29.
|
Biferale, L., Cencini, M., Lanotte, A., Vergni, D., Vulpiani, A., 2001. Inverse statistics of smooth signals: The case of two dimensional turbulence. Physical Review Letters, 87(12), 124501. https://dx.doi.org/10.1103/physrevlett.87.124501.
|
Biferale, L., Cencini, M., Lanotte, A.S., Vergni, D., 2003. Inverse velocity statistics in two-dimensional turbulence. Physics of Fluids, 15(4), 1012-1020. https://doi.org/10.1063/1.1557527.
|
Bogachev, M.I., Eichner, J.F., Bunde, A., 2008. The effects of multifractality on the statistics of return intervals. The European Physical Journal Special Topics, 161(1), 181-193. https://doi.org/10.1140/epjst/e2008-00760-5.
|
Chao, X.B., Jia, Y.F,, Shields, F.D., Wang, S.S.Y., Cooper, C.M., 2008. Three-dimensional numerical modeling of cohesive sediment transport and wind wave impact in a shallow oxbow lake. Advances in Water Resources, 31(7), 1004-1014. https://doi.org/10.1016/j.advwatres.2008.04.005.
|
Chen, W., Zhou, H.B., 2005. Lévy-Kolmogorov scaling of turbulence. Mathematical Physics, arXiv: math-ph/0506039.
|
Chen, Y.M., Hu, G.X., Yang, S.Y., Li, Y.P., 2012. Study on wind-driven flow under the influence of water freezing in winter in a northern shallow lake. Advances in Water Science, 23(6), 837–843 (in Chinese).
|
Csanady, G., 1973. Wind-induced barotropic motions in long lakes. Journal of Physical Oceanography, 3(4), 429–438. https://doi.org/10.1175/1520-0485(1973)003<0429:wibmil>2.0.co;2.
|
Davidson, P.A., 2015. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, New York.
|
Douady, S., Couder, Y., Brachet, M.E., 1991. Direct observation of the intermittency of intense vorticity filaments in turbulence. Physical Review Letters, 67(8), 983-986. https://doi.org/10.1103/physrevlett.67.983.
|
Feller, W., 2008. An Introduction to Probability Theory and Its Applications (Vol. 2). John Wiley & Sons, New York.
|
Feynman, R.P., Leighton, R.B., Sands, M., Lindsay, R.B., 1966. The feynman lectures on physics, vol. 3: Quantum mechanics. Physics Today, 19(11), 80-83. https://doi.org/10.1063/1.3047826.
|
Frisch, U., 1991. From global scaling, a la Kolmogorov, to local multifractal scaling in fully developed turbulence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 434(1890), 89-99. https://doi.org/10.1098/rspa.1991.0082.
|
Frisch, U., 1995. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge.
|
Han, H.J., Hu, W.P., Jin, Y.Q., 2008. Numerical experiments on influence of wind speed on current in lake. Oceanologia Et Limnologia Sinica, 39, 567–576 (in Chinese).
|
Hawley, N., Lesht, B.M., 1992. Sediment resuspension in lake St. Clair. Limnology and Oceanography, 37(8), 1720-1737. https://doi.org/10.4319/lo.1992.37.8.1720.
|
Holmes, P., Lumley, J.L., Berkooz, G., 1998. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge.
|
Hu, L.M., Hu, W.P., Zhai, S.H., Wu, H.Y., 2010. Effects on water quality following water transfer in Lake Taihu, China. Ecological Engineering, 36(4), 471–481 (in Chinese).
|
Jensen, M.H., 1999. Multiscaling and structure functions in turbulence: An alternative approach. Physical Review Letters, 83(1), 76-79. https://doi.org/10.1103/physrevlett.83.76.
|
Jin, K.R., Sun, D.T., 2007. Sediment resuspension and hydrodynamics in Lake Okeechobee during the late summer. Journal of Engineering Mechanics, 133(8), 899–910. https://doi.org/10.1061/(asce)0733-9399(2007)133:8(899).
|
Kolmogorov, A.N., 1941. Dissipation of energy in locally isotropic turbulence. Akademiia Nauk Sssr Doklady, 32(1890), 15-17 (in Russian).
|
Kolmogorov, A.N., 1968. Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Soviet Physics Uspekhi, 10(6), 734-746. https://doi.org/10.1070/pu1968v010n06abeh003710.
|
Laherrere, J., Sornette, D., 1998. Stretched exponential distributions in nature and economy:“fat tails” with characteristic scales. Physics of Condensed Matter, 2(4), 525-539. https://doi.org/10.1007/s100510050276.
|
Li, Y.P., Jalil, A., Du, W., Gao, X.M., Wang, J.W., Luo, L.C., Li, H.Y., Dai, S.J., Hashim, S., Yu, Z.B., et al., 2017. Wind induced reverse flow and vertical profile characteristics in a semi-enclosed bay of large shallow Lake Taihu, China. Ecological Engineering, 102, 224-233. https://doi.org/10.1016/j.ecoleng.2017.02.022.
|
Liang, R.J., Zhong, J.H.,1994. A three-dimensional numerical simulation of wind-driven water current in Taihu Lake. Journal of Lake Science, 6(4), 289-297 (in Chinese).
|
Liang, Y.J., Chen, W., 2013. A survey on computing Lévy stable distributions and a new Matlab toolbox. Signal Processing, 93(1), 242-251. https://doi.org/10.1016/j.sigpro.2012.07.035.
|
Liu, W., Jiang, N., 2004. Three structure functions in turbulence. In: Proceedings of the 10th National Conference on Modern Mathematics and Mechanics. Shanghai University Press, Shanghai, pp 499-503 (in Chinese).
|
Luettich, R.A., Harleman, D.R.F., Somlyody, L., 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography, 35(5), 1050-1067. https://doi.org/10.4319/lo.1990.35.5.1050.
|
Ma, X.G., Hu, F., 2004. Refined structure of energy spectrum and energy cascade in atmosph eric turbulence. Chinese Journal of Geophysics, 47(2), 195-199 (in Chinese).
|
Mehta, A.J., Partheniades, E., 1975. An investigation of the depositional properties of flocculated fine sediment. Journal of Hydraulic Research, 13(4), 361–381. https://doi.org/10.1080/00221687509499694.
|
Nelkin, M., 1992. In what sense is turbulence an unsolved problem? Science, 255(5044), 566-570. https://doi.org/10.1126/science.255.5044.566.
|
Nolan, J.P., 2003. Stable Distributions: Models for Heavy-tailed Data. Birkhauser, New York.
|
Qian, J., 2001. On the normal and anomalous scaling in turbulence. Advances in Mechanics, 31(3), 405-416 (in Chinese).
|
Qu, W.C., Dickman, M., Wang, S.M., 2001. Multivariate analysis of heavy metal and nutrient concentrations in sediments of Taihu Lake, China. Hydrobiologia, 450(1-3), 83–89. https://doi.org/10.1023/A:1017551701587.
|
Shlesinger, M.F., West, B.J., Klafter, J., 1987. Lévy dynamics of enhanced diffusion: Application to turbulence. Physical Review Letters, 58(11), 1100-1103. https://doi.org/10.1103/physrevlett.58.1100.
|
Stull, R.B., 2012. An Introduction to Boundary Layer Meteorology. Springer, Netherlands.
|
Švihlová, H., Hron, J., Málek, J., Rajagopal, K.R., Rajagopal, K., 2017. Determination of pressure data from velocity data with a view towards its application in cardiovascular mechanics. Part 2. A study of aortic valve stenosis. International Journal of Engineering Science, 114, 1-15. https://doi.org/10.1016/j.ijengsci.2017.01.002.
|
Tabeling, P., 2002. Two-dimensional turbulence: A physicist approach. Physiological Reports, 362(1), 1-62. https://doi.org/10.1016/s0370-1573(01)00064-3.
|
Uchaikin, V.V., Zolotarev, V.M., 1999. Chance and Stability: Stable Distributions and Their Applications. Walter de Gruyter, Utrecht.
|
Viggiano, B., Gion, M.S., Ali, N., Tutkun, M., Cal, R.B., 2016. Inverse structure functions in the canonical wind turbine array boundary layer. Journal of Renewable and Sustainable Energy, 8(5), 053310. https://doi.org/10.1063/1.4966228.
|
Vincent, A., Meneguzzi, M., 1991. The satial structure and statistical properties of homogeneous turbulence. Journal of Fluid Mechanics, 225, 1-20. https://doi.org/10.1017/s0022112091001957.
|
Weron, R., 2004. Computationally intensive value at risk calculations. In: Gentle, J.E., Härdle, W., Mori, Y. eds., Handbook of Computational Statistics, Springer, Berlin, pp.911–950.
|
Wetzel, R.G., 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego.
|
Zhou, W.X., Sornette, D., Yuan, W.K., 2006. Inverse statistics and multifractality of exit distances in 3D fully developed turbulence. Physica. Section D: Nonlinear Phenomena, 214(1), 55-62. https://doi.org/10.1016/j.physd.2005.12.004.
|