Citation: | Saeideh Samani, Ming Ye, Fan Zhang, Yong-zhen Pei, Guo-ping Tang, Ahmed Elshall, Asghar A. Moghaddam. 2018: Impacts of prior parameter distributions on Bayesian evaluation of groundwater model complexity. Water Science and Engineering, 11(2): 89-100. doi: 10.1016/j.wse.2018.06.001 |
Anamosa, P.R., Nkedi-Kizza, P., Blue, W.G., Sartain, J.B., 1990. Water movement through an aggregated, gravelly oxisol from Cameroon. Geoderma 46(1), 263-281. https://dx.org/10.1016/0016-7061(90)90019-6.
|
Arkesteijn, L., Pande, S., 2013. On hydrological model complexity, its geometrical interpretations and prediction uncertainty. Water Resources Research 49(10), 7048-7063. https://dx.org/10.1002/wrcr.20529.
|
Brooks, R.J., Tobias, A.M., 1996. Choosing the best model: Level of detail, complexity, and model performance. Mathematical and Computer Modeling 24(4), 1-14. https://dx.org/10.1016/0895-7177(96)00103-3.
|
Clement, T.P., 2011. Complexities in hindcasting models: When should we say enough is enough? Ground Water 49(5), 620-629. https://dx.org/10.1111/j.1745-6584.2010.00765.x.
|
Dai, H., Ye, M., 2015. Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation. Journal of Hydrology 528, 286-300. https://dx.org/10.1016/j.jhydrol.2015.06034.
|
Dai, H., Chen, X.Y., Ye, M., Song, X.H., Zachara, J.M., 2017a. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling. Water Resources Research 53, 4327-4343. https://dx.org/10.1002/2016WR019756.
|
Dai, H., Ye, M., Walker, A.P., Chen, X.Y., 2017b. A new process sensitivity index to identify important system processes under process model and parametric uncertainty. Water Resources Research 53, 3476-3490. https://dx.org/10.1002/2016WR019715.
|
Dai, Z.X., Wolfsberg, A., Reimus, P., Deng, H.L., Kwicklis, E., Ding, M., Ware, D., Ye, M., 2012. Identification of sorption processes and parameters for radionuclide transport in fractured rock. Journal of Hydrology 414, 220-230. https://dx.org/10.1016/j.jhydrol.2011.10.035.
|
Elshall, A.S., Tsai, F.T.-C., 2014. Constructive epistemic modeling of groundwater flow with geological structure and boundary condition uncertainty under the Bayesian paradigm. Journal of Hydrology 517, 105-119. https://dx.org/10.1016/j.jhydrol.2014.05.027.
|
Engelhardt, I., de Aguinaga, J.G., Mikat, H., Schüth, C., Liedl, R., 2014. Complexity vs. simplicity: Groundwater model ranking using information criteria. Ground Water 52(4), 573-583. https://dx.org/10.1111/gwat.12080.
|
Gómez-Hernández, J., 2006. Complexity. Ground Water 44(6), 782-785. https://dx.org/10.1111/j.1745-6584.2006.00222.x.
|
Hill, M.C., 2006. The practical use of simplicity in developing ground water models. Ground Water 44(6), 775-781. https://dx.org/10.1111/j.1745-6584.2006.00227.x.
|
Hill, M.C., Tiedeman, C.R., 2007. Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty. John Wiley and Sons, Hoboken.
|
Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T., 1999. Bayesian model averaging: A tutorial. Statistical Science 14(4), 382-417.
|
Hunt, R.J., Zheng, C.M., 1999. Debating complexity in modeling. Eos Transactions of the American Geophysical Union 80(3), 29. https://dx.org/10.1029/99EO00025.
|
Hunt, R.J., Doherty, J., Tonkin, M.J., 2007. Are models too simple? Arguments for increased parameterization. Ground Water 45(3), 254-262. https://dx.org/10.1111/j.1745-6584.2007.00316.x.
|
Jakeman, A.J., Hornberger, G.M., 1993. How much complexity is warranted in a rainfall-runoff model? Water Resources Research 29(8), 2637-2649. https://dx.org/10.1029/93WR00877.
|
Kashyap, R.L., 1982. Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Transactions on Pattern Analysis and Machine Intelligence 4(2), 99-104. https://dx.org/10.1109/TPAMI.1982.4767213.
|
Kumar, P., 2011. Typology of hydrologic predictability. Water Resources Research 47(3), 167-177. https://dx.org/10.1029/2010WR009769.
|
Liu, P.G., Elshall, A.S., Ye, M., Beerli, P., Zeng, X.K., Lu, D., Tao, Y.Z., 2016. Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods. Water Resources Research 52(2), 734-758. https://dx.org/10.1002/2014WR016718.
|
Lu, D., Ye, M., Neuman, S.P., 2011. Dependence of Bayesian model selection criteria and Fisher information matrix on sample size. Mathematical Geosciences 43(8), 971-993. https://dx.org/10.1007/s11004-011-9359-0.
|
Lu, D., Ye, M., Meyer, P.D., Curtis, G.P., Shi, X.Q., Niu, X.F., Yabusaki, S.B., 2013. Effects of error covariance structure on estimation of model averaging weights and predictive performance. Water Resources Research 49(9), 6029-6047. https://dx.org/10.1002/wrcr.20441.
|
Marshall, L., Nott, D., Sharma, A., 2005. Hydrological model selection: A Bayesian alternative. Water Resources Research 41(10), W10422. https://dx.org/10.1029/2004WR003719.
|
Massoudieh, A., Lu, N., Liang, X., Nguyen, T.H., Ginn, T.R., 2013. Bayesian process-identification in bacteria transport in porous media. Journal of Contaminant Hydrology 153, 78-91. https://dx.org/10.1016/j.jconhyd.2013.08.004.
|
Parker, J.C., van Genuchten, M.T., 1984. Determining Transport Parameters from Laboratory and Field Tracer Experiments, Virginia Agricultural Experiment Station Bulletin 84-3.Virginia Agricultural Experiment Station, Blacksburg.
|
Schöniger, A., Wöhling, T., Samaniego, L., Nowak, W., 2014. Model selection on solid ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence. Water Resources Research 50(12), 9484-9513. https://dx.org/10.1002/2014WR016062.
|
Schöniger, A., Illman, W.A., Wöhling, T., Nowak, W., 2015. Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection. Journal of Hydrology 531, 96-110. https://dx.org/10.1016/j.jhydrol.2015.07.047.
|
Schoups, G., van de Giesen, N.C., Savenije, H.H.G., 2008. Model complexity control for hydrologic prediction. Water Resources Research 44(12), 370-380. https://dx.org/10.1029/2008WR006836.
|
Schoups, G., Vrugt, J.A., 2011. Bayesian Selection of Hydrological Models Using Sequential Monte Carlo Sampling. In: Poster AGU 2011.
|
Simmons, C.T., Hunt, R.J., 2012. Updating the debate on model complexity. Geological Society of America 22(8), 28-29. https://dx.org/10.1130/GSATG150GW.1.
|
Tang, G., Mayes, M.A., Parker, J.C., Yin, X.L., Watson, D.B., Jardine, P.M., 2009. Improving parameter estimation for column experiments by multi-model evaluation and comparison. Journal of Hydrology 376(3), 567-578. https://dx.org/10.1016/j.jhydrol.2009.07.063.
|
Tang, G., Mayes, M.A., Parker, J.C., Jardine, P.M., 2010. CXTFIT/Excel: A modular adaptable code for parameter estimation, sensitivity analysis and uncertainty analysis for laboratory or field tracer experiments. Computers & Geosciences 36(9), 1200-1209. https://dx.org/10.1016/j.cageo.2010.01.013.
|
Toride, N., Leij, F.J., van Genuchten, M.T.V, 1995. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments, Research Report, No. 137. U.S. Department of Agriculture, Riverside.
|
Ye, M., Neuman, S.P., Meyer, P.D., Pohlmann, K.F., 2005. Sensitivity analysis and assessment of prior model probabilities in MLBMA with application to unsaturated fractured tuff. Water Resources Research 41(12), 4203-4206. https://dx.org/10.1029/2005WR004260.
|
Ye, M., Meyer, P.D., Neuman, S.P., 2008a. On model selection criteria in multimodel analysis. Water Resources Research 44(3), 380-384. https://dx.org/10.1029/2008WR006803.
|
Ye, M., Pohlmann, K.F., Chapman, J.B., 2008b. Expert elicitation of recharge model probabilities for the Death Valley regional flow system. Journal of Hydrology 354(1-4), 102-115. https://dx.org/10.1016/j.jhydrol.2008.03.001.
|
Ye, M., Lu, D., Neuman, S.P., Meyer, P.D., 2010. Comment on “Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window” by Frank T.-C. Tsai and Xiaobao Li. Water Resources Research 46(2), 2802. https://dx.org/10.1029/2007WR006576.
|
Ye, M., Wang, L.Y., Pohlmann, K.F., Chapman, J.B., 2016. Evaluating groundwater interbasin flow using multiple models and multiple types of data. Ground Water 54(6), 805-817. https://dx.org/10.1111/gwat.12422.
|
Young, P., Parkinson, S., Lees, M., 1996. Simplicity out of complexity in environmental modeling: Occam’s Razor revisited. Journal of Applied Statistics 23(2-3), 165-210. https://dx.org/10.1080/02664769624206.
|
Zeng, X.K., Ye, M., Burkardt, J.C., Wu, J., Wang, D., Zhu, X.B., 2016a. Evaluating two sparse grid surrogates and two adaptation criteria for groundwater Bayesian uncertainty analysis. Journal of Hydrology 535, 120-134. https://dx.org/10.1016/j.jhydrol.2016.01.058.
|
Zeng, X.K., Wu, J., Wang, D., Zhu, X.B., Long, Y.Q., 2016b. Assessing Bayesian model averaging uncertainty of groundwater modeling based on information entropy method. Journal of Hydrology 538, 689-704. https://doi.org/10.1016/j.jhydrol.2016.04.038.
|