Citation: | Zohreh Sheikh Khozani, Hossein Bonakdari, Isa Ebtehaj. 2018: An expert system for predicting shear stress distribution in circular open channels using gene expression programming. Water Science and Engineering, 11(2): 167-176. doi: 10.1016/j.wse.2018.07.001 |
Alavi, A.H., Gandomi, A.H., Nejad, H.C., Mollahasani, A., Rashed, A., 2013. Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems. Neural Computing and Applications 23(6), 1771-1786. https://doi.org/10.1007/s00521-012-1144-6.
|
Azamathulla, H. M., Ab Ghani, A., 2010. Genetic programming to predict river pipeline scour. Journal of Pipeline Systems Engineering and Practice 1(3), 127-132. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000060.
|
Berlamont, J.E., Trouw, K., Luyckx, G., 2003. Shear stress distribution in partially filled pipes. Journal of Hydraulic Engineering 129(9), 697-705. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:9(697).
|
Blanckaert, K., Buschman, F.A., Schielen, R., Wijbenga, J.H.A., 2008. Redistribution of velocity and bed-shear stress in straight and curved open channels by means of a bubble screen: Laboratory experiments. Journal of Hydraulic Engineering 134(2), 184-195. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:2(184).
|
Bonakdari, H., Sheikh, Z., Tooshmalani, M., 2015. Comparison between Shannon and Tsallis entropies for prediction of shear stress distribution in circular open channels. Stochastic Environmental Research and Risk Assessment 29(1), 1-11. https://doi.org/10.1007/s00477-014-0959-3.
|
Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., Sharifi, A., 2015. Gene expression programming to predict the discharge coefficient in rectangular side weirs. Applied Soft Computing, 35, 618-628. https://doi.org/10.1016/j.asoc.2015.07.003.
|
Ebtehaj, I., Bonakdari, H., 2016. Assessment of evolutionary algorithms in predicting non-deposition sediment transport. Urban Water Journal 13(5), 499-510. https://doi.org/10.1080/1573062X.2014.994003.
|
Ferreira, C., 2001. Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems 13(2), 87-129.
|
Ferreira, C., 2002. Gene expression programming in problem solving. In: Roy R., Köppen M., Ovaska S., Furuhashi T., Hoffmann F., eds., Soft Computing and Industry. Springer, London.
|
Ferreira, C., 2006. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, second ed. Springer-Verlag, Germany.
|
Gharagheizi, F., Ilani-Kashkouli, P., Farahani, N., Mohammadi, A.H., 2012. Gene expression programming strategy for estimation of flash point temperature of non-electrolyte organic compounds. Fluid Phase Equilibria 329, 71-77. https://doi.org/10.1016/j.fluid.2012.05.015.
|
Kaydani, H., Najafzadeh, M., Hajizadeh, A., 2014. A new correlation for calculating carbon dioxide minimum miscibility pressure based on multi-gene genetic programming. Journal of Natural Gas Science and Engineering 21, 625-630. https://doi.org/10.1016/j.jngse.2014.09.013.
|
Kisi, O., Emin Emiroglu, M., Bilhan, O., Guven, A., 2012. Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches. Expert Systems with Applications 39(3), 3454-3460. https://doi.org/10.1016/j.eswa.2011.09.035.
|
Knight, D.W., 1981. Boundary shear in smooth and rough channels. Journal of the Hydraulics Division 107(7), 839-851.
|
Knight, D.W., Sterling, M., 2000. Boundary shear in circular pipes running partially full. Journal of Hydraulic Engineering 126(4), 263-275. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:4(263).
|
Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., Valdez, M., 2013. Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Systems with Applications 40(8), 3196-3206. https://doi.org/10.1016/j.eswa.2012.12.033.
|
Najafzadeh, M., Barani, G.A., Azamathulla, H.M., 2014. Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Computing and Applications 24(3-4), 629-635. https://doi.org/10.1007/s00521-012-1258-x.
|
Najafzadeh, M., Azamathulla, H.M., 2015. Neuro-fuzzy GMDH systems to predict the scour pile groups due to waves. Journal of Computing in Civil Engineering 29(5), 04014068. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000376.
|
Najafzadeh, M., Balf, M.R., Rashedi, E., 2016. Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. Journal of Hydroinformatics 18(5), 867-844. https://doi.org/10.2166/hydro.2016.212.
|
Pechlivanidis, G.I., Keramaris, E., Pechlivanidis, I.G., Samaras, G.A., 2015. Shear stress estimation in the linear zone over impermeable and permeable beds in open channels. Desalination and Water Treatment 54(8), 2181-2189. https://doi.org/10.1080/19443994.2014.933622.
|
Rhodes, D.G., Knight, D.W., 1994. Distribution of shear force on boundary of smooth rectangular duct. Journal of Hydraulic Engineering 120(7), 787-807. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:7(787).
|
Sattar, A.M.A., Gharabaghi, B., 2015. Gene expression models for prediction of longitudinal dispersion coefficient in streams. Journal of Hydrology 524, 587-596. https://doi.org/10.1016/j.jhydrol.2015.03.016.
|
Seckin, G., Seckin, N., Yurtal, R., 2006. Boundary shear stress analysis in smooth rectangular channels. Canadian Journal of Civil Engineering 33(3), 336-342. https://doi.org/10.1139/L05-110.
|
Sheikh Khozani, Z., Bonakdari, H., 2015. Prediction of boundary shear stress in circular and trapezoidal channels with entropy concept. Urban Water Journal 13(6), 629-636. https://doi.org/10.1080/1573062X.2015.1011672.
|
Sheikh Khozani, Z., Bonakdari, H., 2016. A comparison of five different models in predicting the shear stress distribution in straight compound channels. Scientia Iranica 23(6), 2536-2545.https://doi.org/10.24200/sci.2016.2312.
|
Sheikh Khozani, Z., Bonakdari, H., 2017. Formulating the shear stress distribution in circular open channels based on the Renyi entropy. Physica A: Statistical Mechanics and its Applications 490, 114-126. https://doi.org/10.1016/j.physa.2017.08.023.
|
Sheikh Khozani, Z., Bonakdari, H., Zaji, A.H., 2016a. Application of a genetic algorithm in predicting the percentage of shear force carried by walls in smooth rectangular channels. Measurement 87, 87-98. https://doi.org/10.1016/j.measurement.2016.03.018.
|
Sheikh Khozani, Z., Bonakdari, H., Zaji, A.H., 2016b. Application of soft computing technique in prediction percentage of shear force carried by walls in rectangular channel with non-homogenous roughness. Water Science and Technology 73(1), 124-129. https://doi.org/10.2166/wst.2015.470.
|
Sheikh Khozani, Z., Bonakdari, H., Zaji, A.H., 2017. Estimating shear stress in a rectangular channel with rough boundaries using an optimized SVM method. Neural Computing and Applications 28, 1-13. https://doi.org/10.1007/s00521-016-2792-8.
|
Shiri, J., Sadraddini, A.A., Nazemi, A.H., Kisi, O., Landeras, G., Fard, A.F., Marti, P., 2014. Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology 508, 1-11. https://doi.org/10.1016/j.jhydrol.2013.10.034.
|
Sterling, M., Knight, D., 2002. An attempt at using the entropy approach to predict the transverse distribution of boundary shear stress in open channel flow. Stochastic Environmental Research and Risk Assessment 16(2), 127-142. https://doi.org/10.1007/s00477-002-0088-2.
|
Tominaga, A., Nezu, I., Ezaki, K., Nakagawa, H., 1989. Three-dimensional turbulent structure in straight open channel flows. Journal of Hydraulic Research 27(1), 149-173. https://doi.org/10.1080/00221688909499249.
|
Yang, K.J., Nie, R.H., Liu, X.N., Cao, S.Y., 2013. Modeling depth-averaged velocity and boundary shear stress in rectangular compound channels with secondary flows. Journal of Hydraulic Engineering 139(1), 76-83. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000638.
|
Zhang, Y.Q., Pu, Y.F., Zhang, H.S., Su, Y.B., Zhang, L.F., Zhou, J.L., 2013. Using gene expression programming to infer gene regulatory networks from time-series data. Computational Biology and Chemistry 47, 198-206. https://doi.org/10.1016/j.compbiolchem.2013.09.004.
|