Citation: | Zhuo Zhang, Hua-ming Guo, Zhen Wang. 2018: Differences in major ions as well as hydrogen and oxygen isotopes of sediment pore water and lake water. Water Science and Engineering, 11(2): 147-156. doi: 10.1016/j.wse.2018.07.005 |
Appelo, C.A.J., Postma, D., 2005. Geochemistry, Groundwater and Pollution. CRC Press, Florida.
|
Arnarson, T.S., Keil, R.G., 2000. Mechanisms of pore water organic matter adsorption to montmorillonite. Marine Chemistry 71(3), 309-320. https://doi.org/10.1016/S0304-4203(0 0)00059-1.
|
Aseltyne, T.A., Rowe, H.D., Fryar, A.E., 2006. Stable isotopic fingerprint of a hyporheic-hypolentic boundary in a reservoir. Hydrogeology Journal 14(8), 1688-1695. https://doi.org/ 10.1007/s10040-006-0088-2.
|
Bath, A.H., Edmunds, W.M., 1981. Identification of connate water in interstitial solution of chalk sediment. Geochimica et Cosmochimica Acta, 45(9), 1449-1461. https://doi.org/10.1016/ 0016-7037(81)90278-7.
|
Berg, M., Arnold, C.G., Müller, S.R., Mühlemann, J., Schwarzenbach, R.P., 2001. Sorption and desorption behavior of organotin compounds in sediment-pore water systems. Environmental Science & Technology, 35(15), 3151-3157. https://doi.org/10.1021/es010010f.
|
Beyer, W., 1966. Hydrogeologische Untersuchungen bei der Ablagerung von Wasserschadstoffen. Zeitschrift fuer Angewandte Geologie, 12(11), 599-606 (in German).
|
Boschetti, T., 2013. Oxygen isotope equilibrium in sulfate-water systems: A revision of geothermometric applications in low-enthalpy systems. Journal of Geochemical Exploration, 124, 92-100. https://doi.org/10.1016/j.gexplo.2012.08.011.
|
Böttcher, G., Brumsack, H.J., Heinrichs, H., Pohlmann, M., 1997. A new high-pressure squeezing technique for pore fluid extraction from terrestrial soils. Water, Air, and Soil Pollution, 94(3-4), 289–296. https://doi.org/10.1007/BF02406064.
|
Breeuwsma, A., Wösten, J.H.M., Vleeshouwer, J.J., van Slobbe, A.M., Bouma, J., 1986. Derivation of land qualities to assess environmental problems from soil surveys. Soil Science Society of America, 50(1), 186-190. https://doi.org/10.2136/sssaj1986.03615995005 000010035x.
|
Bufflap, S.E., Allen, H.E., 1995. Comparison of pore water sampling techniques for trace metals. Water Research, 29(9), 2051-2054. https://doi.org/10.1016/0043-1354(95)00032-G.
|
Cleveland, D., Brumbaugh, W.G., MacDonald, D.D., 2017. A comparison of four pore water sampling methods for metal mixtures and dissolved organic carbon, and the implications for sediment toxicity evaluations. Environmental Toxicology and Chemistry, 36(11), 2906-2915. https://doi.org/10.1002/etc.3884.
|
Concas, S., Ardau, C., Di Bonito, M., Lattanzi, P., Vacca, A., 2015. Field sampling of soil pore water to evaluate the mobile fraction of trace elements in the Iglesiente area (SW Sardinia, Italy). Journal of Geochemical Exploration, 158, 82-94. https://doi.org/10.1016/j.gexplo.201 5.07.006.
|
Cyr, M., Rivard, P., Labrecque, F., Daidie, A., 2008. High-pressure device for fluid extraction from porous materials: Application to cement-based materials. Journal of the American Ceramic Society, 91(8), 2653-2658. https://doi.org/10.1111/j.1551-2916.2008.02525.x.
|
Dahlgren, R.A., 2006. Biogeochemical processes in soils and ecosystems: From landscape to molecular scale. Journal of Geochemical Exploration, 88(1-3), 186-189. https://doi.org/10.1016/j.gexplo.2005.08.035.
|
Delongchamp, T.M., Ridal, J.J., Lean, D.R.S., Poissant, L., Blais, J.M., 2010. Mercury transport between sediments and the overlying water of the St. Lawrence River area of concern near Cornwall, Ontario. Environmental Pollution, 158(5), 1487-1493. https://doi.org/10.1016/ j.envpol.2009.12.030.
|
Edmunds, W.M., Bath, A.H., 1976. Centrifuge extraction and chemical analysis of interstitial waters. Environmental Science & Technology, 10(5), 467-472. https://doi.org/10.1021/es601 16a002.
|
Figueroa-Johnson, M.A., Tindall, J.A., Friedel, M., 2007. A comparison of δ18O composition of water extracted from suction lysimeters, centrifugation, and azeotropic distillation. Water, Air, and Soil Pollution, 184(1-4), 63-75. https://doi.org/10.1007/s11270-007-9399-8.
|
Gat, J.R., 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24(1), 225-262. https://doi.org/10.1146/annurev.earth.24.1.225.
|
Giosan, L., Flood, R.D., Aller, R.C., 2002. Paleoceanographic significance of sediment color on western North Atlantic drifts: I. Origin of color. Marine Geology, 189(1), 25-41. https://doi.o rg/10.1016/S0025-3227(02)00321-3.
|
Hong, Y.S., Kinney, K.A., Reible, D.D., 2011. Effects of cyclic changes in pH and salinity on metals release from sediments. Environmental Toxicology and Chemistry, 30(8), 1775-1784. https://doi.org/10.1002/etc.584.
|
Horn, M.K., 1964. A Computer System for the Geochemical Balance of the Elements. Ph.D. Dissertation, Geology Department, Rice University, Houstou.
|
Horneman, A., van Geen, A., Kent, D.V., Mathe, P.E., Zheng, Y., Dhar, R.K., O’Connell, S., Hoque, M.A., Aziz, Z., Shamsudduha, M., et al., 2004. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochimica et Cosmochimica Acta, 68(17), 3459-3473. https://doi.org/10.1016/j.gca.2004.01.026.
|
Karathanasis, A.D., 1991. Seasonal variation in solution composition and mineral stability of two Kentucky Alfisols. Soil Science Society of America Journal, 55(3), 881-890. https://doi.org/1 0.2136/sssaj1991.03615995005500030044x.
|
Kinniburgh, D.G., Miles, D.L., 1983. Extraction and chemical analysis of interstitial water from soils and rocks. Environmental Science & Technology, 17(6), 362-368. https://doi.org/10.1 021/es00112a011.
|
Kwong, H.T., Jiao, J.J., Liu, K., Guo, H.P, Yang, S.Y., 2015. Geochemical signature of pore water from core samples and its implications on the origin of saline pore water in Cangzhou, North China Plain. Journal of Geochemical Exploration, 157, 143-152. https://doi.org/10.1016/j.gex plo.2015.06.008.
|
Lan, R.J., Ma, W., Ban, J.Y., 2016. Studies on assessment indicator system for water ecological civilization of Yanqi Lake ecological development demonstration zone in Beijing. China Water Resources, 67(11), 39-41. https://doi.org/ 10.3969/j.issn.1000-1123.2016.11.014.
|
Li, S.Z., Xu, R.K., Li, J.Y., 2009. Interaction of electrical double layers between oppositely charge particles in variable-charge soils as related to source to salt adsorption. Soil Science, 174(1), 27-34. https://doi.org/10.1097/SS.0b013e3181945463.
|
Li, Z.Y., Li, J.Y., Xu, R.K., Hong, Z.N., Liu, Z.D., 2015. Streaming potential method for characterizing the overlapping of diffuse layers of the electrical double layers between oppositely charged particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 478, 22-29. https://doi.org/10.1016/j.colsurfa.2015.03.024.
|
Liu, Q., He, F., Zhang, Q.J., Yang, M., Li, Y., Qu, J.Q., 2013. Analysis and evaluation of water quality characteristics in Olympic Dragon-shaped Water System in Beijing. Journal of Dalian Ocean University, 28(6), 596-603. https://doi.org/10.16535/j.cnki.dlhyxb. 2013.06.006
|
Mayer, L.M., 1976, Chemical water sampling in lake sand sediments with dialysis bags. Limnol Oceanogr, 21(6), 909–912. https://doi.org/10.4319/lo.1976.21.6.0909.
|
McManus, J., Palmer, M.R., Haley, B.A., Murray, N., Manners, H.R., 2016. Pore Water Constraints on the Competition Between Carbonate and Tephra Diagenesis in Sediments from the Lesser Antilles Volcanic Arc: Implications for Carbon Preservation. American Geophysical Union.
|
Méheut, M., Lazzeri, M., Balan, E., Mauri, F., 2010. First-principles calculation of H/D isotopic fractionation between hydrous minerals and water. Geochimica et Cosmochimica Acta, 74(14), 3874-3882. https://doi.org/10.1016/j.gca.2010.04.020.
|
O’Neil, J.R., Taylor Jr, H.P., 1969. Oxygen isotope equilibrium between muscovite and water. Journal of Geophysical Research, 74(25), 6012-6022. https://doi.org/10.1029/JB074i025p06012.
|
Orlowski, N., Pratt, D.L., McDonnell, J.J., 2016. Intercomparison of soil pore water extraction methods for stable isotope analysis. Hydrological Processes, 30(19), 3434-3449. https://doi.org/10.1002/hyp.10870.
|
Pang, Z.H., Kong, Y.L., Li, J., Tian, J., 2017. An isotopic geoindicator in the hydrological cycle. Procedia Earth and Planetary Science, 17, 534-537. https://doi.org/10.1016/j.proeps.201 6.12.135.
|
Postma, D., Boesen, C., Kristiansen, H., Larsen, F., 1991. Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical modeling. Water Resources Research, 27(8), 2027-2045. https://doi.org/10.1029/91WR00989.
|
Richards, L.A., Weaver, L.R., 1944. Moisture retention by some irrigated soils as related to soil moisture tension. Journal of Agricultural Resource, 69(6), 215-235.
|
Robertson, J.A., Gazis, C.A., 2006. An oxygen isotope study of seasonal trends in soil water fluxes at two sites along a climate gradient in Washington State (USA). Journal of Hydrology, 328(1-2), 375-387. https://doi.org/10.1016/j.jhydrol.2005.12.031.
|
Royer, R.A., Burgos, W.D., Fisher, A.S., Unz, R.F., Dempsey, B.A., 2002. Enhancement of biological reduction of hematite by electron shuttling and Fe II complexation. Environmental Science & Technology, 36(9), 1939-1946. https://doi.org/10.1021/es011139s.
|
Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. In Swart, P.K., ed., Climate Change in Continental Isotopic Records, Geophysical Monograph Series, AGU, Washington DC. pp. 1-36. https://doi.org/10.1029/GM078p0001.
|
Sacchi, E., Michelot, J.L., Pitsch, H., Lalieux, P., Aranyossy, J.F., 2001. Extraction of water and solutes from argillaceous rocks for geochemical characterisation: Methods, processes and current understanding. Hydrogeology Journal, 9(1), 17-33. https://doi.org/10.1007/s10040 0000113.
|
Saini, G.R., MacLean, A.A., 1965. Phosphorus retention capacities of some New Brunswick soils and their relationship with soil properties. Canadian Journal of Soil Science, 45(1), 15-18.
|
Schön, W., Mittermayr, F., Leis, A., Mischak, I., Dietzel, M., 2016. Temporal and spatial variability of chemical and isotopic composition of soil solutions from cambisols-field study and experiments. Science of Total Environment, 572, 1066-1079. https://doi.org/10.1016/j.scito tenv.2016.08.015.
|
Sedgwick, P., 2012. Pearson’s correlation coefficient. British Medical Journal 345. https://doi.org/10.1136/bmj.e4483.
|
Sprenger, M., Herbstritt, B., Weiler, M., 2015. Established methods and new opportunities for pore water stable isotope analysis. Hydrological Processes, 29(25), 5174-5192. https://doi.org/ 10.1002/hyp.10643.
|
Starr, R.C., Gillham, R.W., 1993. Denitrification and organic carbon availability in two aquifers. Groundwater, 31(6), 934-947. https://doi.org/10.1111/j.1745-6584.1993.tb00867.x.
|
van Geen, A., Bostick, B.C., Trang, P.T.K., Lan, V.M., Mai, N.N., Manh, P.D., Viet, P.H., Radloff, K., Aziz, Z., Mey, J.L., et al., 2013. Retardation of arsenic transport through a Pleistocene aquifer. Nature, 501(7466), 204-207. https://doi.org/10.1038/nature12444.
|
Vardy, D.W., Doering, J.A., Santore, R., Ryan, A., Giesy, J.P., Hecker, M., 2015. Assessment of Columbia River sediment toxicity to white sturgeon: Concentrations of metals in sediment, pore water and overlying water. Journal of Environmental & Analytical Toxicology 5(2), 2161-0525. https://doi.org/10.4172/2161-0525.1000263.
|
Vidon, P.G.F., Hill, A.R., 2004. Landscape controls on nitrate removal in stream riparian zones. Water Resources Research, 40(3). https://doi.org/10.1029/2003WR002473.
|
Wang, C.Z., Han, Y.G., Yang, L.L., 2016. Evaluation of surface water quality in Chaoyang District of Beijing. Beijing Agriculture (3), 125-127. https://doi.org/10.3969/j.issn.1000-6966.2016.03.084 (in Chinese).
|
Wang, Y.J., Song, X.F., Ma, Y., Zhang, Y.H., Zheng, F.D., Yang, L.H., Bu, H.M., 2017. Characterizing the hydrogen and oxygen isotopic compositions of different waters at reclaimed water irrigated district in southeast suburb of Beijing. Geographical Research, 36(2), 361-372. https://doi.org/10.11821/dlyj201702013 (in Chinese).
|
Washburn, E.W., 1921. Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Science of the United States of America, 7(4), 115-116. https://doi.org/10.1073/pnas.7.4.115.
|
Watson, P.G., Frickers, P.E, Goodchild, C.M., 1985. Spatial and seasonal variations in the chemistry of sediment interstitial waters in the Tamar estuary. Estuarine, Coastal and Shelf Science, 21(1), 105-119. https://doi.org/10.1016/0272-7714(85)90009-5.
|
Wei, K.Q., Lin, R.F., Wang, Z.X., 1982. Content of 2H, 18O and 3H of precipitation in Beijing. Science in China, Ser.B 12(8), 754-757. https://doi.org/10.1360/zb1982-12-8-754 (in Chinese).
|
Wildemeersch, J.C.J, Garba, M., Sabiou, M, Sleutel, S., Cornelis, W., 2015. The effect of water and soil conservation WSC on the soil chemical, biological, and physical quality of a Plinthosol in Niger. Land Degradation & Development, 26(7), 773-783. https://doi.org/10.10 02/ldr.2416.
|
Winger, P.V., Lasier, P.J., Jackson, B.P., 1998. The influence of extraction procedure on ion concentrations in sediment pore water. Archives of Environmental Contamination and Toxicology, 35(1), 8-13. https://doi.org/10.1007/s002449900341.
|
Xu, D., Wu, W., Ding, S.M., Sun, Q., Zhang, C.S., 2012. A high-resolution dialysis technique for rapid determination of dissolved reactive phosphate and ferrous iron in pore water of sediments. Science of Total Environment, 421-422, 245-252. https://doi.org/10.1016/j.scitotenv.201 2.01.062.
|
Yang, I.C., Peterman, Z.E., Scofield, K.M., 2003. Chemical analyses of pore water from boreholes USW SD-6 and USW WT-24, Yucca Mountain, Nevada. Journal of Contaminant Hydrology 62-63(2), 361-380. https://doi.org/10.1016/S0169-7722(02)00160-2.
|
Yi, L.L., Jiao, W.T., Chen, X.N., Chen, W.P., 2011. An overview of reclaimed water reuse in China. Journal of Environmental Sciences, 23(10), 1585-1593. https://doi.org/10.1016/S1001-0 742(10)60627-4.
|
Zhang, L.H., Li, Z.M., 2003. Changes of weather and environment since 3500a in Beijing region-review moreover on changes of Kunming Lake. Coal Geology of China, (5), 42-43. https://doi.org/10.3969/j.issn.1674-1803.2003.05.014 (in Chinese).
|
Zhu, H.W., Cheng, P.D., Wang, D.Z., 2014. Relative roles of resuspended particles and pore water in release of contaminants from sediment. Water Science and Engineering, 7(3), 344-350. https://doi.org/10.3882/j.issn.1674-2370.2014.03.009.
|