Volume 11 Issue 4
Oct.  2018
Turn off MathJax
Article Contents
Sneha Unnikrishnan, Mohd Hashim Khan, Karthikeyan Ramalingam. 2018: Dye-tolerant marine Acinetobacter baumannii-mediated biodegradation of reactive red. Water Science and Engineering, 11(4): 265-275. doi: 10.1016/j.wse.2018.08.001
Citation: Sneha Unnikrishnan, Mohd Hashim Khan, Karthikeyan Ramalingam. 2018: Dye-tolerant marine Acinetobacter baumannii-mediated biodegradation of reactive red. Water Science and Engineering, 11(4): 265-275. doi: 10.1016/j.wse.2018.08.001

Dye-tolerant marine Acinetobacter baumannii-mediated biodegradation of reactive red

doi: 10.1016/j.wse.2018.08.001
Funds:  This work was supported by the DST Science and Engineering Research Board (SERB, Grant No. SERB/LS-267/2014) and the Extra Mural Research Funding of Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homoeopathy (AYUSH, Grant No. Z. 28015/209/2015-HPC).
More Information
  • Corresponding author: Karthikeyan Ramalingam
  • Received Date: 2018-04-27
  • Rev Recd Date: 2018-08-17
  • The objective of this study was to isolate a potent dye-degrading microbe that can be used to reduce the pollution caused by industrial dyes. Reactive red 198 is an extensively used textile dye and is a major environmental pollutant in water bodies. In this study, a bacterial strain was isolated from sea sediments and identified as Acinetobacter baumannii with 16S rRNA sequencing. The isolated bacteria were immobilized in calcium alginate and decolorization studies were carried out to determine the optimum pH, temperature, dye concentration, inoculum volume, and static/agitated condition using the one factor at a time (OFAT) approach. The Box-Behnken design, a type of response surface methodology, was adopted to improve the degradation efficiency. At 37ºC using an inoculum volume of six beads, 96.20% decolorization was observed in 500 mg/L of reactive red 198 after 72 hours. Dye degradation was confirmed with UV-visible spectroscopy and Fourier-transform infrared (FTIR) spectroscopy studies of the dye and degraded metabolites. Microbial toxicity studies using Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa and phytotoxicity studies using Vigna radiata proved that the toxicity of the dye was significantly reduced after degradation. We can conclude that the isolated Acinetobacter baumannii strain is an efficient dye-degrading microbe that can be used to reduce the pollution caused by industrial dyes.

     

  • loading
  • Aguiar, A., Ferraz, A., 2007. Fe3+- and Cu2+-reduction by phenol derivatives associated with Azure B degradation in Fenton-like reactions. Chemosphere, 66(5), 947–954. https://doi.org/10.1016/j.chemosphere.2006.05.067.
    Alalewi, A., Jiang, C., 2012. Bacterial influence on textile wastewater decolorization. Journal of Environmental Protection, 3(8A), 889–901. https://doi.org/10.4236/jep.2012.328104.
    Arora, D.S., Sandhu, D.K., 1985. Laccase production and wood degradation by a white-rot fungus Daedalea flavida. Enzyme and Microbial Technology, 7(8), 405–408. https://doi.org/10.1016/0141-0229(85)90131-0.
    Azmi, W., Sani, R.K., Banerjee, U.C., 1998. Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 22(3), 185–191. https://doi.org/10.1016/S0141-0229(97)00159-2.
    Balaji, S., Chung, S.J., Thiruvenkatachari, R., Moon, I.S., 2007. Mediated electrochemical oxidation process: Electro-oxidation of cerium(III) to cerium(IV) in nitric acid medium and a study on phenol degradation by cerium(IV) oxidant. Chemical Engineering Journal, 126(1), 51–57. https://doi.org/10.1016/j.cej.2006.05.021.
    Banat, I.M., Nigam, P., Singh, D., Marchant, R., 1996. Microbial decolorization of textile-dye-containing effluents: A review. Bioresource Technology, 58(3), 217–227. https://doi.org/10.1016/S0960-8524(96)00113-7.
    Barikbin, B., Hadinasab, S., Nabavian, M.R., 2017. Decolorization of Reactive Red 198 by ultrasonic process in aqueous solution. Journal of Health Sciences and Technology, 1(2), 86–92.
    Bettman, H., Rehm, H.J., 1984. Degradation of phenol by polymer entrapped microorganisms. Applied Microbiology and Biotechnology, 20(5), 285–290. https://doi.org/10.1007/BF00270587.
    Chang, J.S., Kuo, T.S., 2000. Kinetics of bacterial decolorization of azo dyes with Escherichia coli NO3. Bioresource Technology, 75(2), 107–111. https://doi.org/10.1016/S0960-8524(00)00049-3.
    Chang, J.S., Lin, C.Y., 2001. Decolorization kinetics of a recombinant Escherichia coli strain harboring azo dye decolorizing determinants from Rhodococcus sp. Biotechnology Letters, 23(8), 631–636. https://doi.org/10.1023/A:1010306114286.
    Chen, C.C., Liao, H.J., Cheng, C.Y., Yen, C.Y., Chung, Y.C., 2007. Biodegradation of crystal violet by Pseudomonas putida, Biotechnology Letters, 29(3), 391–396. https://doi.org/10.1007/s10529-006-9265-6.
    Chen, C.-H., Chang, C.-F., Ho, C.-H., Tsai, T.-L., Liu, S.-M., 2008. Biodegradation of crystal violet by a Shewanella sp. NTOU1. Chemosphere, 72(11), 1712–1720. https://doi.org/10.1016/j.chemosphere.2008.04.069.
    Chen, K.C., Wu, J.Y., Huang, C.C., Liang, Y.M., Hwang, S.C.J., 2003. Decolorization of azo dye using PVA-immobilized microorganisms. Journal of Biotechnology, 101(3), 241–252. https://doi.org/10.1016/S0168-1656(02)00362-0.
    Cooper, P., 1993. Removing color from dye house wastewater: A critical review of technology available. Journal of the Society of Dyers and Colorists, 109(3), 97–100. https://doi.org/10.1111/j.1478-4408.1993.tb01536.x.
    Coughlin, M.F., Kinkle, B.K., Bishop, P.L., 1999. Degradation of azo dyes containing aminonapthol by Sphignomonas sp. strain 1CX. Journal of Industrial Microbiological Biotechnology, 23(4–5), 341–346. https://doi.org/10.1038/sj/jim/2900746.
    Daneshvar, N., Khataee, A.R., Ghadim, A.A.R., Rasoulifard, M.H., 2007. Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of Hazardous Materials, 148(3), 566–572. https://doi.org/10.1016/j.jhazmat.2007.03.028.
    Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.M., Gascuel, O., 2008. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(s2), 465–469. https://doi.org/10.1093/nar/gkn180.
    Edgar, R.C., 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340.
    Fazli, M.M., Mesdaghinia, A.R., Naddafi, K., Nasseri, S., Yunesian, M., Assadi, M.M., Rezaie, S., Hamzehei, H., 2010. Optimization of Reactive Blue 19 decolorization by Ganoderma sp. using response surface methodology. Iranian Journal of Environmental Health Science and Engineering, 7(1), 35–42.
    Forgacs, E., Cserhati, T., Oros, G., 2004. Removal of synthetic dyes from wastewaters: A review. Environment International, 30(7), 953–971. https://doi.org/10.1016/j.envint.2004.02.001.
    Gomare, S.S., Jadhav, J.P., Govindwar, S.P., 2008. Degradation of sulfonated azo dyes by the purified lignin peroxidase from Brevibacillus laterosporus MTCC 2298. Biotechnology and Bioprocess Engineering, 13(2), 136–143. https://doi.org/10.1007/s12257-008-0008-5.
    Hamid, M., Rehman, K., 2009. Potential applications of peroxidases. Food Chemistry, 115(4), 1177–1186. https://doi.org/10.1016/j.foodchem.2009.02.035.
    Hazrat, A., 2010. Biodegradation of synthetic dyes: A review. Water Air Soil Pollution, 213(1–4), 251–273. https://doi.org/10.1007/s11270-010-0382-4.
    Hu, T.L., 2001. Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Science and Technology, 43(2), 261–269. https://doi.org/10.1029/2000WR900288.
    Illanjiam, S., Kantha, D.A., 2012. Degradation of azo dyes by immobilized Pseudomonas aeroginosa and Bacillus subtilis. Discovery Life, 1(1), 26–31.
    Jadhav, J.P., Govindwar, S.P., 2006. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast, 23(4), 315–323. https://doi.org/10.1002/yea.1356.
    Jadhav, S.B., Surwase, S.N., Kalyani, D.C., Gurav, R.G., Jadhav, J.P., 2012. Biodecolorization of azo dye removal orange by Pseudomonas aeruginosa BCH and toxicity (oxidative stress) reduction in Allium cepa root cells. Applied Biochemistry and Biotechnology, 168(5), 1319–1334. https://doi.org/10.1007/s12010-012-9860-z.
    Kalme, S., Ghodake, G., Gowindwar, S.P., 2007. Red HE7B degradation using desulfonation by Pseudomonas desmolyticum NCIM 2112. International Biodeterioration and Biodegradation, 60(4), 327–333. https://doi.org/10.1016/j.ibiod.2007.05.006.
    Kalyani, D.C., Telke, A.A., Dhanve, R.S., Jadhav, J.P., 2009. Ecofriendly biodegradation and detoxification of reactive red 2 textile dye by newly isolated Pseudomonas sp. SUK1. Journal of Hazardous Materials, 163(2–3), 735–742. https://doi.org/10.1016/j.jhazmat.2008.07.020.
    Koyani, R.D., Sanghvi, G.V., Sharma, R.K., Rajput, K.S., 2013. Contribution of lignin degrading enzymes in decolourisation and degradation of reactive textile dyes. International Biodeterioration and Biodegradation, 77, 1–9. https://doi.org/10.1016/j.ibiod.2012.10.006.
    Kuppusamy, S., Sethurajan, M., Kadarkarai, M., Rajasekar, A., 2016. Biodecolourization of textile dyes by novel, indigenous Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3. Journal of Environmental Chemical Engineering, 5(1), 716–724. https://doi.org/10.1016/j.jece.2016.12.021.
    Lade, H., Govindwar, S., Paul, D., 2015. Low-cost biodegradation and detoxification of textile azo dye C.I. Reactive Blue 172 by Providencia rettgeri strain HSL1. Journal of Chemistry, 894109. https://doi.org/10.1155/2015/894109.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.
    Maier, J., Kandelbauer, A., Erlacher, A., Cavaco-Paulo, A., Gubitz, G.M., 2004. A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Applied and Environmental Microbiology, 70(2), 837–844. https://doi.org/10.1128/AEM.70.2.837-844.2004.
    Myers, R.H., Montgomery, D.C., 2002. Response Surface Methodology: Product and Process Optimization Using Designed Experiments, 2nd ed. John Wiley & Sons, Inc., New York. https://doi.org/10.1007/0-387-22634-6_16.
    Nachiyaar, C.V., Rajkumar, G.S., 2003. Degradation of a tannery and textile dye, Navitan Fast Blue S5R by Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 19(6), 609–614. https://doi.org/10.1023/A:1025159617260.
    Ning, X., Yang, C., Wang, Y., Yang, Z., Wang, J., Li, R., 2014. Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226. Biotechnology and Bioprocess Engineering, 19(4), 687–695. https://doi.org/10.1007/s12257-013-0729-y.
    Ogugbue, C.J., Morad, N., Sawidis, T., Oranusi, N.A., 2012. Decolorization and partial mineralization of a polyazo dye by Bacillus firmus immobilized within tubular polymeric gel, 3 Biotech, 2(1), 67–78. https://doi.org/10.1007/s13205-011-0035-3.
    Pandey, A., Singh, P., Iyengar, L., 2007. Bacterial decolourization and degradation of azo dyes. International Biodeterioration and Biodegradation, 59(2), 73–84. https://doi.org/10.1016/j.ibiod.2006.08.006.
    Papadopoulou, K., Kalagona, I.M., Philippoussis, A., Rigas, F., 2013. Optimization of fungal decolorization of azo and anthraquinone dyes via Box-Behnken design. International Biodeterioration and Biodegradation, 77, 31–38. https://doi.org/10.1016/j.ibiod.2012.10.008.
    Park, J.K., Chang, H.N., 2000. Microencapsulation of microbial cells. Biotechnology Advances 18(4), 303–319. https://doi.org/10.1016/S0734-9750(00)00040-9.
    Parshetti, G.K., Kalme, S.D., Saratale, G.D., Govindwar, S.P., 2006. Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chimica Slovenica 53(4), 492–498.
    Parshetti, G.K., Parshetti, S.G., Telke, A.A., Kalyani, D.C., Dong, R.A., Govindwar, S.P., 2011. Biodegradation of crystal violet by Agrobacterium radiobacter. Journal of Environmental Sciences, 23(8), 1384–1393. https://doi.org/10.1016/S1001-0742(10)60547-5.
    Permpornsakul, P., Prasongsuk, S., Lotrakul, P., Eveleigh, D.E., Kobayashi, D.Y., Imai, T., Punnapayak, H., 2016. Biological treatment of reactive black 5 by resupinate white rot fungus Phanerochaete sordida PBU 0057. Polish Journal of Environmental Studies, 25(3), 1167–1176. https://doi.org/10.15244/pjoes/61625.
    Phugare, S.S., Kalyani, D.C., Patil, A.V., Jadhav, J.P., 2011. Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. Journal of Hazardous Materials, 186(1), 713–723. https://doi.org/10.1016/j.jhazmat.2010.11.049.
    Pradhan, P., Babu, G.K., 2012. Biological decolorization of reactive red 31 and reactive yellow 81 dyes by novel isolated bacterial strain Streptococcus sp. VBH1. International Journal of Current Research, 4(10), 10–16.
    Prasad, S.S., Aikat, K., 2014. Study of bio-degradation and bio-decolourization of azo dye by Enterobacter sp. SXCR. Environmental Technology, 35(8), 956–965. https://doi.org/10.1080/09593330.2013.856957.
    Raghukumar, C., Chandramohan, D., Michel Jr., F.C., Reddy, C.A., 1996. Degradation of lignin and decolorization of paper mill bleach plant effulent BPE by marine fungi. Biotechnology Lettters, 18(1), 105–106. https://doi.org/ 10.1007/BF00137820.
    Roriz, M.S., Osma, J.F., Teixeir, J.A., Couto, S.R., 2009. Application of response surface methodological approach to optimise Reactive Black 5 decolouration by crude laccase from Trametes pubescen. Journal of Hazardous Materials, 169(1–3), 691–696. https://doi.org/10.1016/j.jhazmat.2009.03.150.
    Salokhe, M.D., Govindwar, S.P.,1999. Effect of carbon source on the biotransformation enzyme in Serratia marcescens. World Journal of Microbiology and Biotechnology,15(2), 259–263. https://doi.org/10.1023/A:1008875404889.
    Saratale, R.G., Saratale, G.D., Chang, J.S., Govindwar, S.P., 2011. Bacterial decolourization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138–157. https://doi.org/10.1016/j.jtice.2010.06.006.
    Satar, R., Husain, Q., 2011. Catalyzed degradation of disperse dyes by calcium alginate-pectin entrapped bitter gourd (Momordica charantia) peroxidase. Journal of Environmental Sciences, 23(7), 1135–1142. https://doi.org/10.1016/S1001-0742(10)60525-6.
    Shah, M., 2016. Microbial degradation of Reactive Orange M2R dye by bacterial consortium ETL-A. Journal of Microbial Biochemical Technology, 8(6), 483–487. https://doi.org/10.4172/1948-5948.1000329.
    Shedbalkar, H., Jadhav, J.P., 2011. Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnology and Bioprocess Engineering 16, 196–204.
    Shedbalkar, U., Dhanve, R., Jadhav, J., 2008. Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. Journal of Hazardous Materials, 157(2–3), 472–479. https://doi.org/10.1016/j.jhazmat.2008.01.023.
    Silveira, E., Marques, P.P., Silva, S.S., Lima-Filho, J.L., Porto, A.L.F., Tambourgi, E.B., 2009. Selection of Pseudomonas for industrial textile dyes decolourization. International Biodeterioration and Biodegradation, 63(2), 230–235. https://doi.org/10.1016/j.ibiod.2008.09.007.
    Solis, M., Solis, A., Perez, H.I., Manjarrez, N., Flores, M., 2012. Microbial decoloration of azo dyes: A review. Process Biochemistry, 47(12), 1723–1748. https://doi.org/10.1016/j.procbio.2012.08.014.
    Stolz, A., 2001. Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology, 56(1–2), 69–80. https://doi.org/10.1007/s002530100686.
    Suzuki, T., Timofei, S., Kurunczi, L., Dietze, U., Schuurmann, G., 2001. Correlation of aerobic biodegradability of Sulfonated azo dyes with the chemical structure. Chemosphere, 45(1), 1–9. https://doi.org/10.1016/S0045-6535(01)00074-1.
    Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4), 564–577. https://doi.org/10.1080/10635150701472164.
    Tien, M., Kirk, T.K., 1983. Lignin-degrading enzyme from the hymenomycetes Phanerochaete chrysosporium. Science, 221(4611), 661–663. https://doi.org/10.1126/science.221.4611.661.
    Tony, B.D., Goyal, D., Khanna, S., 2009. Decolorization of textile azo dyes by aerobic bacterial consortium. International Biodeterioration and Biodegradation, 63(4), 462–469. https://doi.org/10.1016/j.ibiod.2009.01.003.
    Tripathi, A., Srivastava, S.K., 2011. Ecofriendly treatment of azo dyes: Biodecolorization using bacterial strains. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(1), 37–40. https://doi.org/10.7763/IJBBB.2011.V1.7.
    Waghmode, T.R., Kurade, M.B., Lade, H.S., Govindwar, S.P., 2012. Decolorization and biodegradation of Rubine GFL by microbial consortium GG-BL in sequential aerobic/microaerophilic process. Applied Biochemistry and Biotechnology, 167(6), 1578–1594. https://doi.org/10.1007/s12010-012-9585-z.
    Wu, J., Li, L., Du, H., Jiang, L., Zhang, Q., Wei, Z., Wang, X., Xiao, L., Yang, L., 2011. Biodegradation of leuco derivatives of triphenylmethane dyes by Sphingomonas sp. CM9. Biodegradation, 22(5), 897–904. https://doi.org/10.1007/s10532-010-9447-8.
    Yu, J., Wang, X., Yue, P.L., 2001. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Research, 35(15), 3579–3586. https://doi.org/10.1016/S0043-1354(01)00100-2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (675) PDF downloads(598) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return