Citation: | Sneha Unnikrishnan, Mohd Hashim Khan, Karthikeyan Ramalingam. 2018: Dye-tolerant marine Acinetobacter baumannii-mediated biodegradation of reactive red. Water Science and Engineering, 11(4): 265-275. doi: 10.1016/j.wse.2018.08.001 |
Aguiar, A., Ferraz, A., 2007. Fe3+- and Cu2+-reduction by phenol derivatives associated with Azure B degradation in Fenton-like reactions. Chemosphere, 66(5), 947–954. https://doi.org/10.1016/j.chemosphere.2006.05.067.
|
Alalewi, A., Jiang, C., 2012. Bacterial influence on textile wastewater decolorization. Journal of Environmental Protection, 3(8A), 889–901. https://doi.org/10.4236/jep.2012.328104.
|
Arora, D.S., Sandhu, D.K., 1985. Laccase production and wood degradation by a white-rot fungus Daedalea flavida. Enzyme and Microbial Technology, 7(8), 405–408. https://doi.org/10.1016/0141-0229(85)90131-0.
|
Azmi, W., Sani, R.K., Banerjee, U.C., 1998. Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 22(3), 185–191. https://doi.org/10.1016/S0141-0229(97)00159-2.
|
Balaji, S., Chung, S.J., Thiruvenkatachari, R., Moon, I.S., 2007. Mediated electrochemical oxidation process: Electro-oxidation of cerium(III) to cerium(IV) in nitric acid medium and a study on phenol degradation by cerium(IV) oxidant. Chemical Engineering Journal, 126(1), 51–57. https://doi.org/10.1016/j.cej.2006.05.021.
|
Banat, I.M., Nigam, P., Singh, D., Marchant, R., 1996. Microbial decolorization of textile-dye-containing effluents: A review. Bioresource Technology, 58(3), 217–227. https://doi.org/10.1016/S0960-8524(96)00113-7.
|
Barikbin, B., Hadinasab, S., Nabavian, M.R., 2017. Decolorization of Reactive Red 198 by ultrasonic process in aqueous solution. Journal of Health Sciences and Technology, 1(2), 86–92.
|
Bettman, H., Rehm, H.J., 1984. Degradation of phenol by polymer entrapped microorganisms. Applied Microbiology and Biotechnology, 20(5), 285–290. https://doi.org/10.1007/BF00270587.
|
Chang, J.S., Kuo, T.S., 2000. Kinetics of bacterial decolorization of azo dyes with Escherichia coli NO3. Bioresource Technology, 75(2), 107–111. https://doi.org/10.1016/S0960-8524(00)00049-3.
|
Chang, J.S., Lin, C.Y., 2001. Decolorization kinetics of a recombinant Escherichia coli strain harboring azo dye decolorizing determinants from Rhodococcus sp. Biotechnology Letters, 23(8), 631–636. https://doi.org/10.1023/A:1010306114286.
|
Chen, C.C., Liao, H.J., Cheng, C.Y., Yen, C.Y., Chung, Y.C., 2007. Biodegradation of crystal violet by Pseudomonas putida, Biotechnology Letters, 29(3), 391–396. https://doi.org/10.1007/s10529-006-9265-6.
|
Chen, C.-H., Chang, C.-F., Ho, C.-H., Tsai, T.-L., Liu, S.-M., 2008. Biodegradation of crystal violet by a Shewanella sp. NTOU1. Chemosphere, 72(11), 1712–1720. https://doi.org/10.1016/j.chemosphere.2008.04.069.
|
Chen, K.C., Wu, J.Y., Huang, C.C., Liang, Y.M., Hwang, S.C.J., 2003. Decolorization of azo dye using PVA-immobilized microorganisms. Journal of Biotechnology, 101(3), 241–252. https://doi.org/10.1016/S0168-1656(02)00362-0.
|
Cooper, P., 1993. Removing color from dye house wastewater: A critical review of technology available. Journal of the Society of Dyers and Colorists, 109(3), 97–100. https://doi.org/10.1111/j.1478-4408.1993.tb01536.x.
|
Coughlin, M.F., Kinkle, B.K., Bishop, P.L., 1999. Degradation of azo dyes containing aminonapthol by Sphignomonas sp. strain 1CX. Journal of Industrial Microbiological Biotechnology, 23(4–5), 341–346. https://doi.org/10.1038/sj/jim/2900746.
|
Daneshvar, N., Khataee, A.R., Ghadim, A.A.R., Rasoulifard, M.H., 2007. Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of Hazardous Materials, 148(3), 566–572. https://doi.org/10.1016/j.jhazmat.2007.03.028.
|
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.M., Gascuel, O., 2008. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(s2), 465–469. https://doi.org/10.1093/nar/gkn180.
|
Edgar, R.C., 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340.
|
Fazli, M.M., Mesdaghinia, A.R., Naddafi, K., Nasseri, S., Yunesian, M., Assadi, M.M., Rezaie, S., Hamzehei, H., 2010. Optimization of Reactive Blue 19 decolorization by Ganoderma sp. using response surface methodology. Iranian Journal of Environmental Health Science and Engineering, 7(1), 35–42.
|
Forgacs, E., Cserhati, T., Oros, G., 2004. Removal of synthetic dyes from wastewaters: A review. Environment International, 30(7), 953–971. https://doi.org/10.1016/j.envint.2004.02.001.
|
Gomare, S.S., Jadhav, J.P., Govindwar, S.P., 2008. Degradation of sulfonated azo dyes by the purified lignin peroxidase from Brevibacillus laterosporus MTCC 2298. Biotechnology and Bioprocess Engineering, 13(2), 136–143. https://doi.org/10.1007/s12257-008-0008-5.
|
Hamid, M., Rehman, K., 2009. Potential applications of peroxidases. Food Chemistry, 115(4), 1177–1186. https://doi.org/10.1016/j.foodchem.2009.02.035.
|
Hazrat, A., 2010. Biodegradation of synthetic dyes: A review. Water Air Soil Pollution, 213(1–4), 251–273. https://doi.org/10.1007/s11270-010-0382-4.
|
Hu, T.L., 2001. Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Science and Technology, 43(2), 261–269. https://doi.org/10.1029/2000WR900288.
|
Illanjiam, S., Kantha, D.A., 2012. Degradation of azo dyes by immobilized Pseudomonas aeroginosa and Bacillus subtilis. Discovery Life, 1(1), 26–31.
|
Jadhav, J.P., Govindwar, S.P., 2006. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast, 23(4), 315–323. https://doi.org/10.1002/yea.1356.
|
Jadhav, S.B., Surwase, S.N., Kalyani, D.C., Gurav, R.G., Jadhav, J.P., 2012. Biodecolorization of azo dye removal orange by Pseudomonas aeruginosa BCH and toxicity (oxidative stress) reduction in Allium cepa root cells. Applied Biochemistry and Biotechnology, 168(5), 1319–1334. https://doi.org/10.1007/s12010-012-9860-z.
|
Kalme, S., Ghodake, G., Gowindwar, S.P., 2007. Red HE7B degradation using desulfonation by Pseudomonas desmolyticum NCIM 2112. International Biodeterioration and Biodegradation, 60(4), 327–333. https://doi.org/10.1016/j.ibiod.2007.05.006.
|
Kalyani, D.C., Telke, A.A., Dhanve, R.S., Jadhav, J.P., 2009. Ecofriendly biodegradation and detoxification of reactive red 2 textile dye by newly isolated Pseudomonas sp. SUK1. Journal of Hazardous Materials, 163(2–3), 735–742. https://doi.org/10.1016/j.jhazmat.2008.07.020.
|
Koyani, R.D., Sanghvi, G.V., Sharma, R.K., Rajput, K.S., 2013. Contribution of lignin degrading enzymes in decolourisation and degradation of reactive textile dyes. International Biodeterioration and Biodegradation, 77, 1–9. https://doi.org/10.1016/j.ibiod.2012.10.006.
|
Kuppusamy, S., Sethurajan, M., Kadarkarai, M., Rajasekar, A., 2016. Biodecolourization of textile dyes by novel, indigenous Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3. Journal of Environmental Chemical Engineering, 5(1), 716–724. https://doi.org/10.1016/j.jece.2016.12.021.
|
Lade, H., Govindwar, S., Paul, D., 2015. Low-cost biodegradation and detoxification of textile azo dye C.I. Reactive Blue 172 by Providencia rettgeri strain HSL1. Journal of Chemistry, 894109. https://doi.org/10.1155/2015/894109.
|
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.
|
Maier, J., Kandelbauer, A., Erlacher, A., Cavaco-Paulo, A., Gubitz, G.M., 2004. A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Applied and Environmental Microbiology, 70(2), 837–844. https://doi.org/10.1128/AEM.70.2.837-844.2004.
|
Myers, R.H., Montgomery, D.C., 2002. Response Surface Methodology: Product and Process Optimization Using Designed Experiments, 2nd ed. John Wiley & Sons, Inc., New York. https://doi.org/10.1007/0-387-22634-6_16.
|
Nachiyaar, C.V., Rajkumar, G.S., 2003. Degradation of a tannery and textile dye, Navitan Fast Blue S5R by Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 19(6), 609–614. https://doi.org/10.1023/A:1025159617260.
|
Ning, X., Yang, C., Wang, Y., Yang, Z., Wang, J., Li, R., 2014. Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226. Biotechnology and Bioprocess Engineering, 19(4), 687–695. https://doi.org/10.1007/s12257-013-0729-y.
|
Ogugbue, C.J., Morad, N., Sawidis, T., Oranusi, N.A., 2012. Decolorization and partial mineralization of a polyazo dye by Bacillus firmus immobilized within tubular polymeric gel, 3 Biotech, 2(1), 67–78. https://doi.org/10.1007/s13205-011-0035-3.
|
Pandey, A., Singh, P., Iyengar, L., 2007. Bacterial decolourization and degradation of azo dyes. International Biodeterioration and Biodegradation, 59(2), 73–84. https://doi.org/10.1016/j.ibiod.2006.08.006.
|
Papadopoulou, K., Kalagona, I.M., Philippoussis, A., Rigas, F., 2013. Optimization of fungal decolorization of azo and anthraquinone dyes via Box-Behnken design. International Biodeterioration and Biodegradation, 77, 31–38. https://doi.org/10.1016/j.ibiod.2012.10.008.
|
Park, J.K., Chang, H.N., 2000. Microencapsulation of microbial cells. Biotechnology Advances 18(4), 303–319. https://doi.org/10.1016/S0734-9750(00)00040-9.
|
Parshetti, G.K., Kalme, S.D., Saratale, G.D., Govindwar, S.P., 2006. Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chimica Slovenica 53(4), 492–498.
|
Parshetti, G.K., Parshetti, S.G., Telke, A.A., Kalyani, D.C., Dong, R.A., Govindwar, S.P., 2011. Biodegradation of crystal violet by Agrobacterium radiobacter. Journal of Environmental Sciences, 23(8), 1384–1393. https://doi.org/10.1016/S1001-0742(10)60547-5.
|
Permpornsakul, P., Prasongsuk, S., Lotrakul, P., Eveleigh, D.E., Kobayashi, D.Y., Imai, T., Punnapayak, H., 2016. Biological treatment of reactive black 5 by resupinate white rot fungus Phanerochaete sordida PBU 0057. Polish Journal of Environmental Studies, 25(3), 1167–1176. https://doi.org/10.15244/pjoes/61625.
|
Phugare, S.S., Kalyani, D.C., Patil, A.V., Jadhav, J.P., 2011. Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. Journal of Hazardous Materials, 186(1), 713–723. https://doi.org/10.1016/j.jhazmat.2010.11.049.
|
Pradhan, P., Babu, G.K., 2012. Biological decolorization of reactive red 31 and reactive yellow 81 dyes by novel isolated bacterial strain Streptococcus sp. VBH1. International Journal of Current Research, 4(10), 10–16.
|
Prasad, S.S., Aikat, K., 2014. Study of bio-degradation and bio-decolourization of azo dye by Enterobacter sp. SXCR. Environmental Technology, 35(8), 956–965. https://doi.org/10.1080/09593330.2013.856957.
|
Raghukumar, C., Chandramohan, D., Michel Jr., F.C., Reddy, C.A., 1996. Degradation of lignin and decolorization of paper mill bleach plant effulent BPE by marine fungi. Biotechnology Lettters, 18(1), 105–106. https://doi.org/ 10.1007/BF00137820.
|
Roriz, M.S., Osma, J.F., Teixeir, J.A., Couto, S.R., 2009. Application of response surface methodological approach to optimise Reactive Black 5 decolouration by crude laccase from Trametes pubescen. Journal of Hazardous Materials, 169(1–3), 691–696. https://doi.org/10.1016/j.jhazmat.2009.03.150.
|
Salokhe, M.D., Govindwar, S.P.,1999. Effect of carbon source on the biotransformation enzyme in Serratia marcescens. World Journal of Microbiology and Biotechnology,15(2), 259–263. https://doi.org/10.1023/A:1008875404889.
|
Saratale, R.G., Saratale, G.D., Chang, J.S., Govindwar, S.P., 2011. Bacterial decolourization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138–157. https://doi.org/10.1016/j.jtice.2010.06.006.
|
Satar, R., Husain, Q., 2011. Catalyzed degradation of disperse dyes by calcium alginate-pectin entrapped bitter gourd (Momordica charantia) peroxidase. Journal of Environmental Sciences, 23(7), 1135–1142. https://doi.org/10.1016/S1001-0742(10)60525-6.
|
Shah, M., 2016. Microbial degradation of Reactive Orange M2R dye by bacterial consortium ETL-A. Journal of Microbial Biochemical Technology, 8(6), 483–487. https://doi.org/10.4172/1948-5948.1000329.
|
Shedbalkar, H., Jadhav, J.P., 2011. Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnology and Bioprocess Engineering 16, 196–204.
|
Shedbalkar, U., Dhanve, R., Jadhav, J., 2008. Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. Journal of Hazardous Materials, 157(2–3), 472–479. https://doi.org/10.1016/j.jhazmat.2008.01.023.
|
Silveira, E., Marques, P.P., Silva, S.S., Lima-Filho, J.L., Porto, A.L.F., Tambourgi, E.B., 2009. Selection of Pseudomonas for industrial textile dyes decolourization. International Biodeterioration and Biodegradation, 63(2), 230–235. https://doi.org/10.1016/j.ibiod.2008.09.007.
|
Solis, M., Solis, A., Perez, H.I., Manjarrez, N., Flores, M., 2012. Microbial decoloration of azo dyes: A review. Process Biochemistry, 47(12), 1723–1748. https://doi.org/10.1016/j.procbio.2012.08.014.
|
Stolz, A., 2001. Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology, 56(1–2), 69–80. https://doi.org/10.1007/s002530100686.
|
Suzuki, T., Timofei, S., Kurunczi, L., Dietze, U., Schuurmann, G., 2001. Correlation of aerobic biodegradability of Sulfonated azo dyes with the chemical structure. Chemosphere, 45(1), 1–9. https://doi.org/10.1016/S0045-6535(01)00074-1.
|
Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4), 564–577. https://doi.org/10.1080/10635150701472164.
|
Tien, M., Kirk, T.K., 1983. Lignin-degrading enzyme from the hymenomycetes Phanerochaete chrysosporium. Science, 221(4611), 661–663. https://doi.org/10.1126/science.221.4611.661.
|
Tony, B.D., Goyal, D., Khanna, S., 2009. Decolorization of textile azo dyes by aerobic bacterial consortium. International Biodeterioration and Biodegradation, 63(4), 462–469. https://doi.org/10.1016/j.ibiod.2009.01.003.
|
Tripathi, A., Srivastava, S.K., 2011. Ecofriendly treatment of azo dyes: Biodecolorization using bacterial strains. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(1), 37–40. https://doi.org/10.7763/IJBBB.2011.V1.7.
|
Waghmode, T.R., Kurade, M.B., Lade, H.S., Govindwar, S.P., 2012. Decolorization and biodegradation of Rubine GFL by microbial consortium GG-BL in sequential aerobic/microaerophilic process. Applied Biochemistry and Biotechnology, 167(6), 1578–1594. https://doi.org/10.1007/s12010-012-9585-z.
|
Wu, J., Li, L., Du, H., Jiang, L., Zhang, Q., Wei, Z., Wang, X., Xiao, L., Yang, L., 2011. Biodegradation of leuco derivatives of triphenylmethane dyes by Sphingomonas sp. CM9. Biodegradation, 22(5), 897–904. https://doi.org/10.1007/s10532-010-9447-8.
|
Yu, J., Wang, X., Yue, P.L., 2001. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Research, 35(15), 3579–3586. https://doi.org/10.1016/S0043-1354(01)00100-2.
|