Citation: | Zhi-yuan Wu, Chang-bo Jiang, Bin Deng, Jie Chen, Yong-gang Cao, Lian-jie Li. 2018: Evaluation of numerical wave model for typhoon wave simulation in South China Sea. Water Science and Engineering, 11(3): 229-235. doi: 10.1016/j.wse.2018.09.001 |
Akp?nar, A., van Vledder, G.P., Kömürcü, M.?., Özger, M., 2012. Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea. Continental Shelf Research, 50-51, 80-99. https://doi.org/10.1016/j.csr.2012.09.012.
|
Amante, C., Barry, W.E., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, Colorado. https://doi.org/10.7289/V5C8276M.
|
Battjes, J.A., Stive, M.J.F., 1985. Calibration and verification of a dissipation model for random breaking waves. Journal of Geophysical Research: Oceans, 90(C5), 9159-9167. https://doi.org/10.1029/JC090iC05p09159.
|
Booij, N., Ris, R.C., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666. https://doi.org/10.1029/98JC02622.
|
Cavaleri, L., Rizzoli, P.M., 1981. Wind wave prediction in shallow water: Theory and applications. Journal of Geophysical Research: Oceans, 86(C11), 10961-10973. https://doi.org/10.1029/JC086iC11p10961.
|
Cavaleri, L., Alves, J.H.G.M., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T.H.C., et al., 2007. Wave modelling: The state of the art. Progress in Oceanography, 75(4), 603-674. https://doi.org/10.1016/j.pocean. 2007.05.005.
|
Chen, S.S., Zhao, W., Donelan, M.A., Tolman, H.L., 2013. Directional wind-wave coupling in fully coupled atmosphere-wave-ocean models: Results from CBLAST-Hurricane. Journal of the Atmospheric Sciences, 70(10), 3198-3215. https://doi.org/10.1175/JAS-D-12-0157.1.
|
Chowdhury, P., Behera, M.R., 2017. Effect of long-term wave climate variability on longshore sediment transport along regional coastlines. Progress in Oceanography, 156, 145-153. https://doi.org/10.1016/j.pocean.2017.06.001.
|
Eldeberky, Y., 1996. Nonlinear Transformation of Wave Spectra in the Nearshore. Ph. D. Dissertation. Delft University of Technology, Delft.
|
Fujita, T., 1952. Pressure distribution within typhoon. Geophysical Magazine, 23(4), 437-451.
|
Graham, H.E., Nunn, D.E., 1959. Meteorological Conditions Pertinent to Standard Project Hurricane. Atlantic and Gulf Coasts of United States. Weather Bureau, U.S. Department of Commerce, Washington, D.C.
|
Group, T.W., 1988. The WAM model: A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12), 1775-1810. https://doi.org/10.1175/1520-0485(1988)018.
|
Hasselmann, K., 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut, 12(2), 1-95.
|
Hasselmann, S., Hasselmann, K., Allender, J.H., Barnett, T.P., 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11), 1378-1391. https://doi.org/10.1175/ 1520-0485(1985)015.
|
Huangfu, J.L., Huang, R.H., Chen, W., 2017. Relationship between the South China Sea summer monsoon onset and tropical cyclone genesis over the western North Pacific. International Journal of Climatology, 37(15), 5206-5210. https://doi.org/10.1002/joc.5141.
|
Janssen, P.A., 1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21(11), 1631-1642. https://doi.org/10.1175/1520-0485(1991)021.
|
Jiang, C.B., Wu, Z.Y., Chen, J., Deng, B., Long, Y.N., 2015. Sorting and sedimentology character of sandy beach under wave action. Procedia Engineering, 116(1), 771-777. https://doi.org/10.1016/j.proeng.2015.08.363.
|
Jiang, C.B., Wu, Z.Y., Chen, J., Deng, B., Long, Y.N., Li, L.J., 2017, An available formula of the sandy beach state induced by plunging waves. Acta Oceanologica Sinica, 36(9), 91-100. https://doi.org/10.1007/s13131-017-1114-z.
|
Komen, G.J., Hasselmann, K., Hasselmann, K., 1984. On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8), 1271-1285. https://doi.org/10.1175/1520-0485(1984)014.
|
Madsen, O.S., Poon, Y.K., Graber, H.C., 1988. Spectral wave attenuation by bottom friction: Theory. International Conference on Coastal Engineering, 45(1), 492-504. https://doi.org/10.1061/9780872626874.035.
|
Monserrat, S., Vilibi?, I., Rabinovich, A.B., 2006. Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Science, 6(6), 1035-1051.
|
Morton, B., Blackmore, G., 2001. South China Sea. Marine Pollution Bulletin, 42(12), 1236-1263. https://doi.org/10.1016/S0025-326X(01)00240-5.
|
Nelson, R.C., 1994. Depth limited design wave heights in very flat regions. Coastal Engineering, 23(1-2), 43-59. https://doi.org/10.1016/0378-3839(94)90014-0.
|
Ou, S.H., Liau, J.M., Hsu, T.W., Tzang, S.Y., 2002. Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan. Ocean Engineering, 29(8), 947-971. https://doi.org/10.1016/S0029-8018(01)00049-X.
|
Padilla-Hernandez, R., Perrie, W., Toulany, B., Smith, P.C., 2007. Modeling of two northwest Atlantic storms with third-generation wave models. Weather and Forecasting, 22(6), 1229-1242. https://doi.org/10.1175/2007WAF2005104.1.
|
Reguero, B.G., Menéndez, M., Méndez, F.J., Mínguez, R., Losada, I.J., 2012. A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Engineering, 65, 38-55. https://doi.org/10.1016/j.coastaleng. 2012.03.003.
|
Rogers, W.E., Kaihatu, J.M., Hsu, L., Jensen, R.E., Dykes, J.D., Holland, K.T., 2007. Forecasting and hindcasting waves with the SWAN model in the Southern California Bight. Coastal Engineering, 54(1), 1-15. https://doi.org/10.1016/j.coastaleng.2006.06.011.
|
Shao, Z.X., Liang, B.C., Li, H.J., Wu, G.X., Wu, Z.H., 2018. Blended wind fields for wave modeling of tropical cyclones in the South China Sea and East China Sea. Applied Ocean Research, 71, 20-33. https://doi.org/10.1016/j.apor.2017.11.012.
|
SWAN Team, 2010. SWAN Scientific and Technical Documentation, SWAN Cycle III Version 40.81. Delft University of Technology, Delft.
|
Takahashi, K., 1939. Distribution of pressure and wind in a typhoon. Journal of the Meteorological Society of Japan, 17(2), 417-421.
|
Tolman, H.L., 2009. User Manual and System Documentation of WAVEWATCH III TM Version 3.14 (MMAB Contribution No. 276). Environmental Modeling Center, NCEP, Camp Springs.
|
Umesh, P.A., Swain, J., 2018. Inter-comparisons of SWAN hindcasts using boundary conditions from WAM and WWIII for northwest and northeast coasts of India. Ocean Engineering, 156, 523-549. https://doi.org/10.1016/ j.oceaneng.2018.03.029.
|
van der Westhuysen, A.J., 2002. The Application of the Numerical Wind-Wave Model SWAN to a Selected Field Case on the South African Coast. Ph. D. Dissertation. University of Stellenbosch, Stellenbosch.
|
Xu, Y., He, H.L., Song, J.B., Hou, Y.J., Li, F.N., 2017. Observations and modeling of typhoon waves in the South China Sea. Journal of Physical Oceanography, 47(6), 1307-1324. https://doi.org/10.1175/JPO-D-16-0174.1.
|