Citation: | Xiao-lei Fu, Zhong-bo Yu, Yong-jian Ding, Ying Tang, Hai-shen Lü, Xiao-lei Jiang, Qin Ju. 2018: Analysis of influence of observation operator on sequential data assimilation through soil temperature simulation with common land model. Water Science and Engineering, 11(3): 196-204. doi: 10.1016/j.wse.2018.09.003 |
Anderson, J.L., 2001. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12), 2884-2903. https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.
|
Bengtsson, T., Snyder, C., Nychka, D., 2003. Toward a nonlinear ensemble filter for high-dimensional systems. Journal of Geophysical Research,108(D24), 8775-8785. https://doi.org/10.1029/2002JD002900.
|
Burgers, G., van Leeuwen, P.J., Evensen, G., 1998. Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126(6), 1719-1724. https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.
|
Chau, K.W., Wu, C.L., Li, Y.S., 2005. Comparison of several flood forecasting models in Yangtze River. Journal of Hydrologic Engineering, ASCE. 10(6), 485-491. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:6(485).
|
Dai, Y., Zeng, X., Dickinson, R.E., Baker, I., Bonan, G.B., Bosilovich, M.G., Denning, A.S., Dirmeyer, P.A., Houser, P.R., Niu, G., et al., 2003. The common land model. Bulletin of the American Meteorological Society, 84(8), 1013-1023. https://doi.org/10.1175/BAMS-84-8-1013.
|
Diak, G.R., Whipple, M.S., 1993. Improvements to models and methods for evaluating the land-surface energy balance and “effective” roughness using radiosonde reports and satellite-measured ‘skin’ temperature data. Agricultural and Forest Meteorology, 63(3-4), 189-218. https://doi.org/10.1016/0168-1923(93)90060-U.
|
Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. Journal of Geophysical Research, 99(C5), 10143-10162. https://doi.org/10.1029/94JC00572.
|
Evensen, G., 1997. Advanced data assimilation for strongly nonlinear dynamics. Monthly Weather Review, 125(6), 1342-1354. https: //doi.org/10.1175/1520-0493(1997)125<1342:ADAFSN>2.0.CO;2.
|
Fu, X.L., Yu, Z.B., Luo, L.F., Lü, H.S., Liu, D., Ju, Q., Yang, T., Xu, F., Gu, H.H., Yang, C.G., et al., 2014. Investigating soil moisture sensitivity to precipitation and evapotranspiration errors using SiB2 model and ensemble Kalman filter. Stochastic Environmental Research and Risk Assessment. 28(3), 681-693. https://doi.org/10.1007/s00477-013-0781-3.
|
Han, X.J., Li, X., 2008. An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sensing of Environment, 112(4), 1434-1449. https://doi.org/10.1016/j.rse.2007.07.008.
|
Huang, C.L., Li, X., Lu, L., 2008. Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter. Remote Sensing of Environment, 112(4), 1320-1336. https://doi.org/10.1016/j.rse.2007.03.028.
|
Julier, S.J., Uhlmann, J.K., 2004. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 410-422. https:// doi.org/10.1109/JPROC.2004.837637.
|
Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering Transactions, 82(1), 35-45. https:// doi.org/ 10.1115/1.3662552.
|
Keefer, T.O., Moran, M.S., Paige, G.B., 2008. Long-term meteorological and soil hydrology database, Walnut Gulch Experimental Watershed, Arizona, United States. Water Resources Research, 44(5), W05S07. https://doi.org/10.1029/2006WR005702.
|
Kumar, P., Kaleita, A.L., 2003. Assimilation of near-surface temperature using extended Kalman filter. Advances in Water Resources, 26(1), 79-93. https://doi.org/10.1016/S0309-1708(02)00098-2.
|
Kumar, S.V., Reichle, R.H., Peters-Lidard, C.D., Koster, R.D., Zhan, X., Crow, W.T., Eylander, J.B., Houser, P.R., 2008. A land surface data assimilation framework using the land information system: Description and applications. Advances in Water Resources, 31(11), 1419-1432. https://doi.org/10.1016/j.advwatres.2008.01.013.
|
Lü, H.S., Yu, Z.B., Zhu, Y.H., Sam, D., Hao, Z.C., Sudicky, E.A., 2010. Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation. Advances in Water Resources, 34(3), 395-406. https://doi.org/10.1016/j.advwatres.2010.12.005.
|
McLaughlin, D., 2002. An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering. Advances in Water Resources, 25(8-12), 1275-1286. https://doi.org/10.1016/S0309-1708(02)00055-6.
|
Mihalakakou, G., 2002. On estimating soil surface temperature profiles. Energy and Buildings, 34(3), 251-259. https:// doi.org/10.1016/S0378-7788(01)00089-5.
|
Miller, R.N., Carter, E.F., Blue, S.T., 1999. Data assimilation into nonlinear stochastic models. Tellus Series A-Dynamic Meteorology and Oceanography, 51(51), 167-194. https://doi.org/10.3402/tellusa.v51i2.12315.
|
Njoku, E.G., Li, L., 1999. Retrieval of land surface parameters using passive microwave measurements at 6-18GHz. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 79-93. https://doi.org/10.1109/36.739125.
|
Oleson, K.W., Dai, Y., Bonan, G.B., Bosilovich, M.G., Dickinson, R.E., Dirmeyer, P.A., Hoffman, F., Houser, P.R., Levis, S., Niu, G., et al., 2004. Technical Description of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-461+STR. https://doi.org/10.5065/D6N877R0.
|
Owe, M., de Jeu, R., 2003. Surface parameter retrieval at global scales by microwave remote sensing. In: SPIE Proceedings Vol. 4879: Remote Sensing for Agriculture, Ecosystems, and Hydrology IV, pp. 202-210. https://doi.org/10.1117/12.466000.
|
Pham, D.T., Verron, J., Roubaud, M.C., 1998. A singular evolutive extended Kalman filter for data assimilation in oceanography. Journal of Marine Systems, 16(3), 323-340. https://doi.org/10.1016/S0924-7963(97)00109-7.
|
Reichle, R.H., 2008. Data assimilation methods in the earth sciences. Advances in Water Resources, 31(11), 1411-1418. https://doi.org/10.1016/j.advwatres.2008.01.001.
|
van der Merwe, R., 2004. Sigma-Point Kalman Filters for Probalistic Inference in Dynamic State-Space Models. Ph. D. Dissertation. Oregon Health and Science University, Portland.
|
Verlaan, M., 1998. Efficient Kalman Filtering Algorithms for Hydrodynamic Models. Ph. D. Dissertation. TU Delft, Delft.
|
Verlaan, M., Heemink, A.W., 2001. Nonlinearity in data assimilation applications: A practical method for analysis. Monthly Weather Review, 129(6), 1578-1589. https://doi.org/10.1175/1520-0493(2001)129<1578:NIDAAA>2.0.CO;2.
|
Wan, Z., Dozier, J., 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4), 892-905. https://doi.org/10.1109/36.508406.
|
Whitaker, J.S., Hamill, T.M., 2002. Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130(7), 1913-1924. https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.
|
Wu, C.L., Chau, K.W., Huang, J.S., 2007. Modeling coupled water and heat transport in a soil-mulch-plant-atmosphere continuum (SMPAC) system. Applied Mathematical Modeling, 31(2), 152-169. https://doi.org/10.1016/j.apm.2005.08.018.
|
Xie, X., Zhang, D., 2010. Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Advances in Water Resources, 33(6), 678-690. https://doi.org/10.1016/j.advwatres.2010.03.012.
|
Yu, Z.B., Fu, X.L., Lü, H.S., Luo, L.F., Liu, D., Ju, Q., Xiang, L., Wang, Z.Z., 2014a. Evaluating ensemble Kalman, particle, and ensemble particle filters through soil temperature prediction. Journal of Hydrologic Engineering, 19(12), https://doi.org/10.1061/(ASCE)HE.1943-5584.0000976.
|
Yu, Z.B., Fu, X.L., Luo, L.F., Lü, H.S., Ju, Q., Liu, D., Kalin, D.A., Huang, D., Yang, C.G., Zhao, L.L., 2014b. One-dimensional soil temperature simulation with common land model by assimilating in situ observations and MODIS LST with the ensemble particle filter. Water Resources Research, 50(8), 6950-6965. https://doi.org/10.1002/2012WR013473.
|