Citation: | Hossein Kheirfam, Sahar Mokarram-Kashtiban. 2018: A regional suspended load yield estimation model for ungauged watersheds. Water Science and Engineering, 11(4): 328-337. doi: 10.1016/j.wse.2018.09.008 |
Abrahams, A.D., 1972.Factor analysis of drainage basin properties: Evidence for stream abstraction accompanying the degradation of relief. Water Resources Research, 8(3), 624-633. https://doi.org/10.1029/WR008i003p00624.
|
Adoalbjörn,S.,Kon?ar,N.,Jones,A.J., 1997. A note on the Gamma test. Neural Computing & Applications,5(3),131-133. https://doi.org/10.1007/BF01413858.
|
Amendola, A., Giordano, F., Parrella, M.L.,Restaino, M., 2017. Variable selection in high-dimensional regression: A nonparametric procedure for business failure prediction. Applied Stochastic Models in Business and Industry,33(4),355-368. https://doi.org/10.1002/asmb.2240.
|
Asselman,N.E.M., 2000. Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234(3-4), 228-248. https://doi.org/10.1016/S0022-1694(00)00253-5.
|
Bethea,R.M., 2018. Statistical Methods for Engineers and Scientists. Routledge, Abingdon-on-Thames.
|
Bywater-Reyes, S., Segura, C.,Bladon, K.D., 2017. Geology and geomorphology control suspended sediment yield and modulate increasesfollowing timber harvest in temperate headwater streams. Journal of Hydrology,548,754-769. https://doi.org/10.1016/j.jhydrol.2017.03.048.
|
Caratti,J.F.,Nesser, J.A.,Lee Maynard, C., 2004. Watershed classification using canonical corresponce analysis and clustering techniques: A cautionary note1. Journal of the American Water Resources Association (JAWRA), 40(5), 1257-1268. https://doi.org/10.1111/j.1752-1688.2004.tb01584.x.
|
Chang, F.,Heinemann, P.H., 2018. Optimizing prediction of human assessments of dairy odors using input variable selection. Computers and Electronics in Agriculture, 150, 402-410. https://doi.org/10.1016/j.compag.2018.05.017.
|
Chen, C.N., 2018. Application of physiographic soil erosion–deposition model in estimating sediment flushing efficiency of empty storage. Journal of Earth System Science, 127(6), 86. https://doi.org/10.1007/s12040-018-0989-1.
|
Cho, J., Her, Y., Bosch, D., 2016. Sensitivity of simulated conservation practice effectiveness to representation of field and in-stream processes in the Little River Watershed. Environmental Modeling &Assessment,22(2),159-173. https://doi.org/10.1007/s10666-016-9530-6.
|
Choubin, B.,Darabi, H., Rahmati, O.,Sajedi-Hosseini, F.,Kløve, B.,2018. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Science of the Total Environment, 615, 272-281. https://doi.org/10.1016/j.scitotenv.2017.09.293.
|
Corcoran, J.J., Wilson, I.D., Ware, J.A., 2003. Predicting the geo-temporal variations of crime and disorder. International Journal of Forecasting, 19(4), 623-634. https://doi.org/10.1016/S0169-2070(03)00095-5.
|
Cruz-Cárdenas,G., Silva, J.T., Ochoa-Estrada, S., Estrada-Godoy, F., Nava-Velázquez, J., 2016. Delineation of environmental units by multivariate techniques in the Duero River Watershed, Michoacán, Mexico. Environmental Modeling & Assessment, 22(3), 257-266. https://doi.org/10.1007/s10666-016-9534-2.
|
Durrant, P.J., 2001. Wingamma: A Non-Linear Data Analysis and Modeling Tool with Applications to Flood Prediction. Ph. D. Dissertation, Cardiff University, Wales.
|
Ebabu, K., Tsunekawa, A., Haregeweyn, N., Adgo, E., Meshesha, D.T., Aklog, D., Masunaga, T., Tsubo, M., Sultan, D., Fenta, A.A., et al., 2018. Analyzing the variability of sediment yield: A case study from paired watersheds in the Upper Blue Nile Basin, Ethiopia. Geomorphology, 303, 446-455.https://doi.org/10.1016/j.geomorph.2017.12.020.
|
Faraway, J., 2002. Practical Regression and ANOVA in R. University of Bath, Bath.
|
Gao, P., Nearing, M.A.,Commons, M., 2013. Suspended sediment transport at the instantaneous and event time scales in semiarid watersheds of southeastern Arizona, USA. Water Resources Research,49(10),6857-6870. https://doi.org/10.1002/wrcr.20549.
|
Hagan, M.T.,Menhaj, M.B., 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989-993.https://doi.org/10.1109/72.329697.
|
Heng, S.,Suetsugi, T., 2013. Using Artificial Neural Network to estimate sediment load in ungauged catchments of the Tonle Sap River Basin, Cambodia. Journal of Water Resource and Protection (JWARP), 5(2), 111-123. https://doi.org/10.4236/jwarp.2013.52013.
|
Hess, A.S., Hess, J.R.,2018. Principal component analysis. Transfusion. 58(7), 1580-1582. https://doi.org/10.1111/trf.14639.
|
Jarvie, H., Oguchi, T.,Neal, C., 2002. Exploring the linkages between river water chemistry and watershed characteristics using GIS-based catchment and locality analyses. Regional EnvironmentalChange,3(1),36-50. https://doi.org/10.1007/s10113-001-0036-6.
|
Kakaei-Lafdani, E., Moghaddamnia, A., Ahmadi, A., 2013. Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478, 50-62. https://doi.org/10.1016/j.jhydrol.2012.11.048.
|
Khan, J.A., van Aelst, S., Zamar, R.H., 2007. Building a robust linear model with forward selection and stepwise procedures. Computational Statistics and Data Analysis (CSDA), 59, 239-248. https://doi.org/10.1016/j.csda.2007.01.007.
|
Khan, M.Y.A., Hasan, F., Panwar, S., Chakrapani, G.J., 2016. Neural network model for discharge and water-level prediction for Ramganga River catchment of Ganga Basin, India. Hydrological Sciences Journal, 61(11), 2084-2095. https://doi.org/10.1080/02626667.2015.1083650.
|
Kheirfam, H.,Vafakhah, M., 2015. Assessment of some homogeneous methods for the regional analysis of suspended sediment yield in the South and Southeast of the Caspian Sea. Journal of Earth System Science, 124(6), 1247-1263. https://doi.org/10.1007/s12040-015-0604-7.
|
Kheirfam, H., Sadeghi, S.H.R., 2017. Variability of bed load components in different hydrological conditions. Journal of Hydrology: Regional Studies, 10, 145-156. https://doi.org/10.1016/j.ejrh.2017.03.002.
|
Khosrobeigi-Bozchaloei, S., Vafakhah, M., 2015. Regional analysis of flow duration curves using adaptive neuro-fuzzy inference system. Journal of Hydrologic Engineering, 20(12), 06015008. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001243.
|
Ki?i, Ö., 2008. Constructing neural network sediment estimation models using a data-driven algorithm. Mathematical and Computer Modelling, 79, 94-103. https://doi.org/10.1016/j.matcom.2007.10.005.
|
Ki?i, Ö., 2010. River suspended sediment concentration modeling using a neural differential evolution approach. Journal of Hydrology, 389(1-2), 227-235. https://doi.org/10.1016/j.jhydrol.2010.06.003.
|
Koncar, N., 1997. Optimisation Methodologies for Direct Inverse Neurocontrol. Ph. D. Dissertation. University of London, London.
|
Kutner,M.H., Nachtsheim, C.,Neter, J.,2004. Applied Linear Regression Models. McGraw-Hill/Irwin, New York.
|
Lin, G.F., Wang, C.M., 2006. Performing cluster analysis and discrimination analysis of hydrological factors in one step. Advances in Water Resources, 29(11), 1573-1585. https://doi.org/10.1016/j.advwatres.2005.11.008.
|
Liu, C.W., Lin, K.H., Kuo, Y.M., 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1-3), 77-89. https://doi.org/10.1016/S0048-9697(02)00683-6.
|
Lobera, G., Batalla, R.J., Vericat, D., López-Tarazón, J.A.,Tena, A., 2016. Sediment transport in two Mediterranean regulated rivers. Science of the Total Environment, 540, 101-113. https://doi.org/10.1016/j.scitotenv.2015.08.018.
|
Maier, H.R.,Dandy, G.C., 1999. Neural Networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling & Software, 15(1), 101-124. https://doi.org/10.1016/S1364-8152(99)00007-9.
|
McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5(4), 115-133. https://doi.org/10.1007/BF02478259.
|
McNeish, D.M., Stapleton, L.M., 2016.The effect of small sample size on two-level model estimates: A review and illustration. Educational Psychology Review, 28(2), 295-314. https://doi.org/10.1007/s10648-014-9287-x.
|
Melesse, A.M., Ahmad, S., McClain, M.E., Wang, X.,Lim, Y.H., 2011. Suspended sediment load prediction of river systems: An artificial neural network approach. Agricultural Water Management, 98(5), 855-866. https://doi.org/10.1016/j.agwat.2010.12.012.
|
Moghaddamnia, A., Ghafari Gousheh, M., Piri, J., Amin, S., Han, D., 2009. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources, 32(1), 88-97. https://doi.org/10.1016/j.advwatres.2008.10.005.
|
Mohammadi, A.A., Yousefi, M., Soltani, J., Ahangar, A.G.,Javan, S., 2018. Using the combined model of gamma test and neuro-fuzzy system for modeling and estimating lead bonds in reservoir sediments. Environmental Science and Pollution Research, 25(30), 30315-30324. https://doi.org/10.1007/s11356-018-3026-7.
|
Nadal-Romero, E., Martínez-Murillo, J.F., Vanmaercke, M., Poesen, J., 2014. Scale-dependency of sediment yield from badland areas in Mediterranean environments. Progress in Physical Geography, 38(3), 381-386. https://doi.org/10.1177/0309133311400330.
|
Noori, R., Hoshyaripour, G., Ashrafi, K., Araabi, B.N., 2010. Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 44(4), 476-482. https://doi.org/10.1016/j.atmosenv.2009.11.005.
|
Noori, R., Karbassi, A.R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M.H., Farokhnia, A.,Gousheh, M.G., 2011. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401(3), 177-189. https://doi.org/10.1016/j.jhydrol.2011.02.021.
|
Nourani, V.,Andalib, G.H., 2015. Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches. Journal of Mountain Science, 12(1), 85-100. https://doi.org/10.1007/s11629-014-3121-2.
|
Ouarda, T.B.M.J., Cunderlik, J.M., St-Hilaire, A., Barbet, M., Bruneau, P., Bobée, B., 2006. Data-based comparison of seasonality-based regional flood frequency methods. Journal of Hydrology, 330(1-2), 329-339. https://doi.org/10.1016/j.jhydrol.2006.03.023.
|
Pektas, A.O., Cigizoglu, H.K., 2017. Investigating the extrapolation performance of neural network models in suspended sediment data. Hydrological Sciences Journal, 62(10), 1694-1703. https://doi.org/10.1080/02626667.2017.1349316.
|
Peres, F.A.P., Fogliatto, F.S., 2018. Variable selection methods in multivariate statistical process control: A systematic literature review. Computers & Industrial Engineering, 115, 603-619. https://doi.org/10.1016/j.cie.2017.12.006.
|
Rainato, R., Mao, L., García-Rama, A., Picco, L., Cesca, M., Vianello, A., Preciso, E., Scussel, G.R., Lenzi, M.A., 2017. Three decades of monitoring in the Rio Cordon instrumented basin: Sediment budget and temporal trend of sediment yield. Geomorphology, 291, 45-56. https://doi.org/10.1016/j.geomorph.2016.03.012.
|
Rajaee, T., Nourani, V., Zounemat-Kermani, M., Ki?i, Ö., 2011. River suspended sediment load prediction: Application of ANN and Wavelet conjunction model. Journal of Hydrologic Engineering, 16(8), 613-627. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000347.
|
Ramachandra Rao, A., Srinivas, V.V., 2006. Regionalization of watersheds by hybrid-cluster analysis. Journal of Hydrology, 318(1-4), 37-56. https://doi.org/10.1016/j.jhydrol.2005.06.003.
|
Rashidi, S., Vafakhah, M., Lafdani, E.K., Javadi, M.R., 2016. Evaluating the support vector machine for suspended sediment load forecasting based on gamma test. Arabian Journal of Geosciences, 9(11), 583. https://doi.org/10.1007/s12517-016-2601-9.
|
Razi, M.A., Athappilly, K., 2005. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Systems with Applications, 29, 65-74. https://doi.org/10.1016/j.eswa.2005.01.006.
|
Restrepo, J.D., Kjerfve, B., Hermelin, M., Restrepo, J.C., 2006. Factors controlling sediment yield in a major South American drainage basin: The Magdalena River, Colombia. Journal of Hydrology, 316(1-4), 213-232. https://doi.org/10.1016/j.jhydrol.2005.05.002.
|
Robertson, D., Saad, D.,Heisey, D., 2006. A regional classification scheme for estimating reference water quality in streams using land-use-adjusted spatial regression-tree analysis. Environmental Management, 37(2), 209-229. https://doi.org/10.1007/s00267-005-0022-8.
|
Sadeghi, S.H.R.,Kheirfam, H., 2015. Temporal variation of bed load to suspended load ratio in Kojour River, Iran. Clean-Soil, Air, Water, 43(10), 1366-1374. https://doi.org/10.1007/s00267-005-0022-8.
|
Sadeghi, S.H.R., Zakeri, M.A., 2015. Partitioning and analyzing temporal variability of wash and bed material loads in a forest watershed in Iran. Journal of Earth System Science, 124(7), 1503-1515. https://doi.org/10.1007/s12040-015-0614-5.
|
Sadeghi, S.H.R., Gharemahmudli, S., Kheirfam, H., Khaledi Darvishan, A., Kiani-Harchegani, M., Saeidi, P., Gholami, L., Vafakhah, M., 2018. Effects of type, level and time of sand and gravel mining on particle size distributions of suspended sediment. International Soil and Water Conservation Research, 6(2), 184-193.https://doi.org/10.1016/j.iswcr.2018.01.005.
|
Samantaray, S.,Ghose, D.K., 2018. Evaluation of suspended sediment concentration using descent neural networks. Procedia Computer Science, 132, 1824-1831.https://doi.org/10.1016/j.procs.2018.05.138.
|
Sharifi Garmdareh, E., Vafakhah, M.,Eslamian, S.S., 2018. Regional flood frequency analysis using support vector regression in arid and semi-arid regions of Iran. Hydrological Sciences Journal, 63(3), 426-440. https://doi.org/10.1080/02626667.2018.1432056.
|
Sharma, M.J.,Yu, S.J., 2015. Stepwise regression data envelopment analysis for variable reduction. Applied Mathematics and Computation, 253, 126-134. https://doi.org/10.1016/j.amc.2014.12.050.
|
Shrestha, S.,Kazama, F., 2007. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modeling & Software, 22(4), 464-475. https://doi.org/10.1016/j.envsoft.2006.02.001.
|
Svitoch,A.A., Badyukova, E.N., Sheikhi, B.,Yanina, T.A.,2013. Geological-geomorphological structure and recent history of the Iranian coast of the Caspian Sea. In Doklady Earth Sciences, 451(2), 843-848. https://doi.org/10.1134/S1028334X13080060.
|
Swarnkar, S., Malini, A., Tripathi, S., Sinha, R., 2018. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: An application to the Garra River basin, India. Hydrology and Earth System Sciences, 22(4), 2471-2485. https://doi.org/10.5194/hess-22-2471-2018.
|
Talebizadeh, M., Morid, S., Ayyoubzadeh, S.A.,Ghasemzadeh, M., 2010. Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resources Management, 24(9), 1747-1761. https://doi.org/10.1007/s11269-009-9522-2.
|
Tramblay, Y., St-Hilaire, A., Ouarda, T.B.M.J., 2007. Modelling extreme suspended sediment concentrations in North America: Frequency analysis and correlations with watershed characteristics. In: Water Quality and Sediment Behaviour of the Future: Predictions for the 21st Century. Proceedings of Symposium HS2005 at IUGG2007, Perugia, IAHS Publication, pp. 20-27.
|
Tramblay, Y., St-Hilaire, A.,Ouarda, T.B.M.J., 2008. Frequency analysis of maximum annual suspended sediment concentrations in North America. Hydrological Science Journal, 53(1), 236-252. https://doi.org/10.1623/hysj.53.1.236.
|
Tramblay, Y., Ouarda, T.B.M.J., St-Hilaire, A.,Poulin, J., 2010. Regional estimation of extreme suspended sediment concentrations using watershed characteristics. Journal of Hydrology,380(3-4),305-317. https://doi.org/10.1016/j.jhydrol.2009.11.006.
|
Tsui, A.P.M., Jones, A.J.,Guedes de Oliveira, A.,2002. The construction of smooth models using irregular embeddings determined by a Gamma test analysis. Neural Computing & Applications, 10(4), 318. https://doi.org/10.1007/s005210200004.
|
Vafakhah, M.,Janizadeh, S., Khosrobeigi Bozchaloei, S.,2014. Application of several data-driven techniques for rainfall-runoff modeling. Ecopersia, 2(1), 455-469..
|
Vanmaercke, M., Poesen, J., Verstraeten, G., de Vente, J., Ocakoglu, F., 2011. Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology, 130(3-4), 142-161. https://doi.org/10.1016/j.geomorph.2011.03.010.
|
White, E.L., 1975. Factor analysis of drainage basin properties: Classification of flood behavior in terms of basin geomorphology. Journal American Water Works Association, 11(4),676-687. https://doi.org/10.1111/j.1752-1688.1975.tb00722.x.
|
Yang, H.B., Li, E.C., Zhao, Y.,Liang, Q.H.,2017. Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary. Water Science and Engineering, 10(4), 287-294. https://doi.org/10.1016/j.wse.2017.12.009.
|
Yilmaz, B., Aras, E., Nacar, S.,Kankal, M., 2018. Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models. Science of The Total Environment, 639, 826-840. https://doi.org/10.1016/j.scitotenv.2018.05.153.
|
Zare Abyaneh, H., 2014. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. Journal of Environmental Health Science & Engineering, 12(1), 1. https://doi.org/10.1186/2052-336X-12-40.
|
Zhang, Y.X., 2007. Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis. Talanta, 73(1), 68-75. https://doi.org/10.1016/j.talanta.2007.02.030.
|