Volume 11 Issue 4
Oct.  2018
Turn off MathJax
Article Contents
Hossein Kheirfam, Sahar Mokarram-Kashtiban. 2018: A regional suspended load yield estimation model for ungauged watersheds. Water Science and Engineering, 11(4): 328-337. doi: 10.1016/j.wse.2018.09.008
Citation: Hossein Kheirfam, Sahar Mokarram-Kashtiban. 2018: A regional suspended load yield estimation model for ungauged watersheds. Water Science and Engineering, 11(4): 328-337. doi: 10.1016/j.wse.2018.09.008

A regional suspended load yield estimation model for ungauged watersheds

doi: 10.1016/j.wse.2018.09.008
Funds:  This work was supported by the Department of Environmental Science,Urmia Lake Research Institute, Urmia University.
More Information
  • Corresponding author: Hossein Kheirfam
  • Received Date: 2018-04-22
  • Rev Recd Date: 2018-09-11
  • Developing regional models using physiographic, climatic, and hydrologic variables is an approach to estimating suspended load yield (SLY) in ungauged watersheds. However, using all the variables might reduce the applicability of these models. Therefore, data reduction techniques (DRTs), e.g., principal component analysis (PCA), Gamma test (GT), and stepwise regression (SR), have been used to select the most effective variables. The artificial neural network (ANN) and multiple linear regression (MLR) are also common tools for SLY modeling. We conducted this study (1) to obtain the most effective variables influencing SLY through DRTs including PCA, GT, and SR, and then, to use them as input data for ANN and MLR; and (2) to provide the best SLY models. Accordingly, we used 14 physiographic, climatic, and hydrologic parameters from 42 watersheds in the Hyrcanian forest region (in northern Iran). The most effective variables as determined through DRTs as well as the original data sets were used as the input data for ANN and MLR in order to provide an SLY model. The results indicated that the SLY models provided by ANN performed much better than the MLR models, and the GT-ANN model was the best. The determination of coefficient, relative error, root mean square error, and bias were 99.9%, 26%, 323 t/year, and 6 t/year in the calibration period, and 70%, 43%, 456 t/year, and 407 t/year in the validation period, respectively. Overall, selecting the main factors that influce SLY and using artificial intelligence tools can be useful for water resources managers to quickly determine the behavior of SLY in ungauged watersheds.

     

  • loading
  • Abrahams, A.D., 1972.Factor analysis of drainage basin properties: Evidence for stream abstraction accompanying the degradation of relief. Water Resources Research, 8(3), 624-633. https://doi.org/10.1029/WR008i003p00624.
    Adoalbjörn,S.,Kon?ar,N.,Jones,A.J., 1997. A note on the Gamma test. Neural Computing & Applications,5(3),131-133. https://doi.org/10.1007/BF01413858.
    Amendola, A., Giordano, F., Parrella, M.L.,Restaino, M., 2017. Variable selection in high-dimensional regression: A nonparametric procedure for business failure prediction. Applied Stochastic Models in Business and Industry,33(4),355-368. https://doi.org/10.1002/asmb.2240.
    Asselman,N.E.M., 2000. Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234(3-4), 228-248. https://doi.org/10.1016/S0022-1694(00)00253-5.
    Bethea,R.M., 2018. Statistical Methods for Engineers and Scientists. Routledge, Abingdon-on-Thames.
    Bywater-Reyes, S., Segura, C.,Bladon, K.D., 2017. Geology and geomorphology control suspended sediment yield and modulate increasesfollowing timber harvest in temperate headwater streams. Journal of Hydrology,548,754-769. https://doi.org/10.1016/j.jhydrol.2017.03.048.
    Caratti,J.F.,Nesser, J.A.,Lee Maynard, C., 2004. Watershed classification using canonical corresponce analysis and clustering techniques: A cautionary note1. Journal of the American Water Resources Association (JAWRA), 40(5), 1257-1268. https://doi.org/10.1111/j.1752-1688.2004.tb01584.x.
    Chang, F.,Heinemann, P.H., 2018. Optimizing prediction of human assessments of dairy odors using input variable selection. Computers and Electronics in Agriculture, 150, 402-410. https://doi.org/10.1016/j.compag.2018.05.017.
    Chen, C.N., 2018. Application of physiographic soil erosion–deposition model in estimating sediment flushing efficiency of empty storage. Journal of Earth System Science, 127(6), 86. https://doi.org/10.1007/s12040-018-0989-1.
    Cho, J., Her, Y., Bosch, D., 2016. Sensitivity of simulated conservation practice effectiveness to representation of field and in-stream processes in the Little River Watershed. Environmental Modeling &Assessment,22(2),159-173. https://doi.org/10.1007/s10666-016-9530-6.
    Choubin, B.,Darabi, H., Rahmati, O.,Sajedi-Hosseini, F.,Kløve, B.,2018. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Science of the Total Environment, 615, 272-281. https://doi.org/10.1016/j.scitotenv.2017.09.293.
    Corcoran, J.J., Wilson, I.D., Ware, J.A., 2003. Predicting the geo-temporal variations of crime and disorder. International Journal of Forecasting, 19(4), 623-634. https://doi.org/10.1016/S0169-2070(03)00095-5.
    Cruz-Cárdenas,G., Silva, J.T., Ochoa-Estrada, S., Estrada-Godoy, F., Nava-Velázquez, J., 2016. Delineation of environmental units by multivariate techniques in the Duero River Watershed, Michoacán, Mexico. Environmental Modeling & Assessment, 22(3), 257-266. https://doi.org/10.1007/s10666-016-9534-2.
    Durrant, P.J., 2001. Wingamma: A Non-Linear Data Analysis and Modeling Tool with Applications to Flood Prediction. Ph. D. Dissertation, Cardiff University, Wales.
    Ebabu, K., Tsunekawa, A., Haregeweyn, N., Adgo, E., Meshesha, D.T., Aklog, D., Masunaga, T., Tsubo, M., Sultan, D., Fenta, A.A., et al., 2018. Analyzing the variability of sediment yield: A case study from paired watersheds in the Upper Blue Nile Basin, Ethiopia. Geomorphology, 303, 446-455.https://doi.org/10.1016/j.geomorph.2017.12.020.
    Faraway, J., 2002. Practical Regression and ANOVA in R. University of Bath, Bath.
    Gao, P., Nearing, M.A.,Commons, M., 2013. Suspended sediment transport at the instantaneous and event time scales in semiarid watersheds of southeastern Arizona, USA. Water Resources Research,49(10),6857-6870. https://doi.org/10.1002/wrcr.20549.
    Hagan, M.T.,Menhaj, M.B., 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989-993.https://doi.org/10.1109/72.329697.
    Heng, S.,Suetsugi, T., 2013. Using Artificial Neural Network to estimate sediment load in ungauged catchments of the Tonle Sap River Basin, Cambodia. Journal of Water Resource and Protection (JWARP), 5(2), 111-123. https://doi.org/10.4236/jwarp.2013.52013.
    Hess, A.S., Hess, J.R.,2018. Principal component analysis. Transfusion. 58(7), 1580-1582. https://doi.org/10.1111/trf.14639.
    Jarvie, H., Oguchi, T.,Neal, C., 2002. Exploring the linkages between river water chemistry and watershed characteristics using GIS-based catchment and locality analyses. Regional EnvironmentalChange,3(1),36-50. https://doi.org/10.1007/s10113-001-0036-6.
    Kakaei-Lafdani, E., Moghaddamnia, A., Ahmadi, A., 2013. Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478, 50-62. https://doi.org/10.1016/j.jhydrol.2012.11.048.
    Khan, J.A., van Aelst, S., Zamar, R.H., 2007. Building a robust linear model with forward selection and stepwise procedures. Computational Statistics and Data Analysis (CSDA), 59, 239-248. https://doi.org/10.1016/j.csda.2007.01.007.
    Khan, M.Y.A., Hasan, F., Panwar, S., Chakrapani, G.J., 2016. Neural network model for discharge and water-level prediction for Ramganga River catchment of Ganga Basin, India. Hydrological Sciences Journal, 61(11), 2084-2095. https://doi.org/10.1080/02626667.2015.1083650.
    Kheirfam, H.,Vafakhah, M., 2015. Assessment of some homogeneous methods for the regional analysis of suspended sediment yield in the South and Southeast of the Caspian Sea. Journal of Earth System Science, 124(6), 1247-1263. https://doi.org/10.1007/s12040-015-0604-7.
    Kheirfam, H., Sadeghi, S.H.R., 2017. Variability of bed load components in different hydrological conditions. Journal of Hydrology: Regional Studies, 10, 145-156. https://doi.org/10.1016/j.ejrh.2017.03.002.
    Khosrobeigi-Bozchaloei, S., Vafakhah, M., 2015. Regional analysis of flow duration curves using adaptive neuro-fuzzy inference system. Journal of Hydrologic Engineering, 20(12), 06015008. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001243.
    Ki?i, Ö., 2008. Constructing neural network sediment estimation models using a data-driven algorithm. Mathematical and Computer Modelling, 79, 94-103. https://doi.org/10.1016/j.matcom.2007.10.005.
    Ki?i, Ö., 2010. River suspended sediment concentration modeling using a neural differential evolution approach. Journal of Hydrology, 389(1-2), 227-235. https://doi.org/10.1016/j.jhydrol.2010.06.003.
    Koncar, N., 1997. Optimisation Methodologies for Direct Inverse Neurocontrol. Ph. D. Dissertation. University of London, London.
    Kutner,M.H., Nachtsheim, C.,Neter, J.,2004. Applied Linear Regression Models. McGraw-Hill/Irwin, New York.
    Lin, G.F., Wang, C.M., 2006. Performing cluster analysis and discrimination analysis of hydrological factors in one step. Advances in Water Resources, 29(11), 1573-1585. https://doi.org/10.1016/j.advwatres.2005.11.008.
    Liu, C.W., Lin, K.H., Kuo, Y.M., 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1-3), 77-89. https://doi.org/10.1016/S0048-9697(02)00683-6.
    Lobera, G., Batalla, R.J., Vericat, D., López-Tarazón, J.A.,Tena, A., 2016. Sediment transport in two Mediterranean regulated rivers. Science of the Total Environment, 540, 101-113. https://doi.org/10.1016/j.scitotenv.2015.08.018.
    Maier, H.R.,Dandy, G.C., 1999. Neural Networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling & Software, 15(1), 101-124. https://doi.org/10.1016/S1364-8152(99)00007-9.
    McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5(4), 115-133. https://doi.org/10.1007/BF02478259.
    McNeish, D.M., Stapleton, L.M., 2016.The effect of small sample size on two-level model estimates: A review and illustration. Educational Psychology Review, 28(2), 295-314. https://doi.org/10.1007/s10648-014-9287-x.
    Melesse, A.M., Ahmad, S., McClain, M.E., Wang, X.,Lim, Y.H., 2011. Suspended sediment load prediction of river systems: An artificial neural network approach. Agricultural Water Management, 98(5), 855-866. https://doi.org/10.1016/j.agwat.2010.12.012.
    Moghaddamnia, A., Ghafari Gousheh, M., Piri, J., Amin, S., Han, D., 2009. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources, 32(1), 88-97. https://doi.org/10.1016/j.advwatres.2008.10.005.
    Mohammadi, A.A., Yousefi, M., Soltani, J., Ahangar, A.G.,Javan, S., 2018. Using the combined model of gamma test and neuro-fuzzy system for modeling and estimating lead bonds in reservoir sediments. Environmental Science and Pollution Research, 25(30), 30315-30324. https://doi.org/10.1007/s11356-018-3026-7.
    Nadal-Romero, E., Martínez-Murillo, J.F., Vanmaercke, M., Poesen, J., 2014. Scale-dependency of sediment yield from badland areas in Mediterranean environments. Progress in Physical Geography, 38(3), 381-386. https://doi.org/10.1177/0309133311400330.
    Noori, R., Hoshyaripour, G., Ashrafi, K., Araabi, B.N., 2010. Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 44(4), 476-482. https://doi.org/10.1016/j.atmosenv.2009.11.005.
    Noori, R., Karbassi, A.R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M.H., Farokhnia, A.,Gousheh, M.G., 2011. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401(3), 177-189. https://doi.org/10.1016/j.jhydrol.2011.02.021.
    Nourani, V.,Andalib, G.H., 2015. Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches. Journal of Mountain Science, 12(1), 85-100. https://doi.org/10.1007/s11629-014-3121-2.
    Ouarda, T.B.M.J., Cunderlik, J.M., St-Hilaire, A., Barbet, M., Bruneau, P., Bobée, B., 2006. Data-based comparison of seasonality-based regional flood frequency methods. Journal of Hydrology, 330(1-2), 329-339. https://doi.org/10.1016/j.jhydrol.2006.03.023.
    Pektas, A.O., Cigizoglu, H.K., 2017. Investigating the extrapolation performance of neural network models in suspended sediment data. Hydrological Sciences Journal, 62(10), 1694-1703. https://doi.org/10.1080/02626667.2017.1349316.
    Peres, F.A.P., Fogliatto, F.S., 2018. Variable selection methods in multivariate statistical process control: A systematic literature review. Computers & Industrial Engineering, 115, 603-619. https://doi.org/10.1016/j.cie.2017.12.006.
    Rainato, R., Mao, L., García-Rama, A., Picco, L., Cesca, M., Vianello, A., Preciso, E., Scussel, G.R., Lenzi, M.A., 2017. Three decades of monitoring in the Rio Cordon instrumented basin: Sediment budget and temporal trend of sediment yield. Geomorphology, 291, 45-56. https://doi.org/10.1016/j.geomorph.2016.03.012.
    Rajaee, T., Nourani, V., Zounemat-Kermani, M., Ki?i, Ö., 2011. River suspended sediment load prediction: Application of ANN and Wavelet conjunction model. Journal of Hydrologic Engineering, 16(8), 613-627. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000347.
    Ramachandra Rao, A., Srinivas, V.V., 2006. Regionalization of watersheds by hybrid-cluster analysis. Journal of Hydrology, 318(1-4), 37-56. https://doi.org/10.1016/j.jhydrol.2005.06.003.
    Rashidi, S., Vafakhah, M., Lafdani, E.K., Javadi, M.R., 2016. Evaluating the support vector machine for suspended sediment load forecasting based on gamma test. Arabian Journal of Geosciences, 9(11), 583. https://doi.org/10.1007/s12517-016-2601-9.
    Razi, M.A., Athappilly, K., 2005. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Systems with Applications, 29, 65-74. https://doi.org/10.1016/j.eswa.2005.01.006.
    Restrepo, J.D., Kjerfve, B., Hermelin, M., Restrepo, J.C., 2006. Factors controlling sediment yield in a major South American drainage basin: The Magdalena River, Colombia. Journal of Hydrology, 316(1-4), 213-232. https://doi.org/10.1016/j.jhydrol.2005.05.002.
    Robertson, D., Saad, D.,Heisey, D., 2006. A regional classification scheme for estimating reference water quality in streams using land-use-adjusted spatial regression-tree analysis. Environmental Management, 37(2), 209-229. https://doi.org/10.1007/s00267-005-0022-8.
    Sadeghi, S.H.R.,Kheirfam, H., 2015. Temporal variation of bed load to suspended load ratio in Kojour River, Iran. Clean-Soil, Air, Water, 43(10), 1366-1374. https://doi.org/10.1007/s00267-005-0022-8.
    Sadeghi, S.H.R., Zakeri, M.A., 2015. Partitioning and analyzing temporal variability of wash and bed material loads in a forest watershed in Iran. Journal of Earth System Science, 124(7), 1503-1515. https://doi.org/10.1007/s12040-015-0614-5.
    Sadeghi, S.H.R., Gharemahmudli, S., Kheirfam, H., Khaledi Darvishan, A., Kiani-Harchegani, M., Saeidi, P., Gholami, L., Vafakhah, M., 2018. Effects of type, level and time of sand and gravel mining on particle size distributions of suspended sediment. International Soil and Water Conservation Research, 6(2), 184-193.https://doi.org/10.1016/j.iswcr.2018.01.005.
    Samantaray, S.,Ghose, D.K., 2018. Evaluation of suspended sediment concentration using descent neural networks. Procedia Computer Science, 132, 1824-1831.https://doi.org/10.1016/j.procs.2018.05.138.
    Sharifi Garmdareh, E., Vafakhah, M.,Eslamian, S.S., 2018. Regional flood frequency analysis using support vector regression in arid and semi-arid regions of Iran. Hydrological Sciences Journal, 63(3), 426-440. https://doi.org/10.1080/02626667.2018.1432056.
    Sharma, M.J.,Yu, S.J., 2015. Stepwise regression data envelopment analysis for variable reduction. Applied Mathematics and Computation, 253, 126-134. https://doi.org/10.1016/j.amc.2014.12.050.
    Shrestha, S.,Kazama, F., 2007. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modeling & Software, 22(4), 464-475. https://doi.org/10.1016/j.envsoft.2006.02.001.
    Svitoch,A.A., Badyukova, E.N., Sheikhi, B.,Yanina, T.A.,2013. Geological-geomorphological structure and recent history of the Iranian coast of the Caspian Sea. In Doklady Earth Sciences, 451(2), 843-848. https://doi.org/10.1134/S1028334X13080060.
    Swarnkar, S., Malini, A., Tripathi, S., Sinha, R., 2018. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: An application to the Garra River basin, India. Hydrology and Earth System Sciences, 22(4), 2471-2485. https://doi.org/10.5194/hess-22-2471-2018.
    Talebizadeh, M., Morid, S., Ayyoubzadeh, S.A.,Ghasemzadeh, M., 2010. Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resources Management, 24(9), 1747-1761. https://doi.org/10.1007/s11269-009-9522-2.
    Tramblay, Y., St-Hilaire, A., Ouarda, T.B.M.J., 2007. Modelling extreme suspended sediment concentrations in North America: Frequency analysis and correlations with watershed characteristics. In: Water Quality and Sediment Behaviour of the Future: Predictions for the 21st Century. Proceedings of Symposium HS2005 at IUGG2007, Perugia, IAHS Publication, pp. 20-27.
    Tramblay, Y., St-Hilaire, A.,Ouarda, T.B.M.J., 2008. Frequency analysis of maximum annual suspended sediment concentrations in North America. Hydrological Science Journal, 53(1), 236-252. https://doi.org/10.1623/hysj.53.1.236.
    Tramblay, Y., Ouarda, T.B.M.J., St-Hilaire, A.,Poulin, J., 2010. Regional estimation of extreme suspended sediment concentrations using watershed characteristics. Journal of Hydrology,380(3-4),305-317. https://doi.org/10.1016/j.jhydrol.2009.11.006.
    Tsui, A.P.M., Jones, A.J.,Guedes de Oliveira, A.,2002. The construction of smooth models using irregular embeddings determined by a Gamma test analysis. Neural Computing & Applications, 10(4), 318. https://doi.org/10.1007/s005210200004.
    Vafakhah, M.,Janizadeh, S., Khosrobeigi Bozchaloei, S.,2014. Application of several data-driven techniques for rainfall-runoff modeling. Ecopersia, 2(1), 455-469..
    Vanmaercke, M., Poesen, J., Verstraeten, G., de Vente, J., Ocakoglu, F., 2011. Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology, 130(3-4), 142-161. https://doi.org/10.1016/j.geomorph.2011.03.010.
    White, E.L., 1975. Factor analysis of drainage basin properties: Classification of flood behavior in terms of basin geomorphology. Journal American Water Works Association, 11(4),676-687. https://doi.org/10.1111/j.1752-1688.1975.tb00722.x.
    Yang, H.B., Li, E.C., Zhao, Y.,Liang, Q.H.,2017. Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary. Water Science and Engineering, 10(4), 287-294. https://doi.org/10.1016/j.wse.2017.12.009.
    Yilmaz, B., Aras, E., Nacar, S.,Kankal, M., 2018. Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models. Science of The Total Environment, 639, 826-840. https://doi.org/10.1016/j.scitotenv.2018.05.153.
    Zare Abyaneh, H., 2014. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. Journal of Environmental Health Science & Engineering, 12(1), 1. https://doi.org/10.1186/2052-336X-12-40.
    Zhang, Y.X., 2007. Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis. Talanta, 73(1), 68-75. https://doi.org/10.1016/j.talanta.2007.02.030.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (507) PDF downloads(493) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return