Citation: | Mojtaba Afsharnia, Mojtaba Kianmehr, Hamed Biglari, Abdollah Dargahi, Abdolreza Karimi. 2018: Disinfection of dairy wastewater effluent through solar photocatalysis processes. Water Science and Engineering, 11(3): 214-219. doi: 10.1016/j.wse.2018.10.001 |
Agunwamba, J.C., Theophilus, I.T., Emenike, P.C., 2013. Effect of disinfectants on aerobic sewage degradation using dettol and izal as case study. International Journal of Structural and Civil Engineering Research, 2(4), 184-194.
|
Alipour, V., Rezaei, L., Etesamirad, M.R., Rahdar, S., Narooie, M.R., Salimi, A., Hasani, J., Khaksefidi, R., Sadat, S.A., Biglari, H., 2017. Feasibility and applicability of solar disinfection (SODIS) for point-of-use water treatment in Bandar Abbas, South of Iran. Journal of Global Pharma Technology, 9(1), 40-46.
|
Barreca, S., Velez colmenares, J.J., Pace, A., Orecchio, S., Pulgarin, C., 2015. Escherichia coli inactivation by neutral solar heterogeneous photo-Fenton (HPF) over hybrid iron/montmorillonite/alginate beads. Journal of Environmental Chemical Engineering, 3(1), 317-324. https://doi.org/10.1016/j.jece.2014.10.018.
|
Bartram, J., Cotruvo, J., Exner, M., Fricker, C., Glasmacher, A., 2003. Heterotrophic plate counts and drinking-water safety: The significance of HPCs for water quality and human health. Water Intelligence Online, 12(3), 57-58.
|
Biglari, H., Saeidi, M., Alipour, V., Rahdar, S., Sohrabi, Y., Khaksefidi, R., Narooie, M.R., Zarei, A., Ahamadabadi, M., 2016. Prospect of disinfection byproducts in water resources of Zabol. International Journal of Pharmacy and Technology, 8(3), 17856-17865.
|
Biglari, H., Afsharnia, M., Alipour, V., Khosravi, R., Sharafi, K., Mahvi, A.H., 2017. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry. Environmental Science and Pollution Research, 24(4), 4105-4116. https://doi.org/10.1007/s11356-016-8079-x.
|
Borges, M.E., Sierra, M., Esparza, P., 2017. Solar photocatalysis at semi-pilot scale: Wastewater decontamination in a packed-bed photocatalytic reactor system with a visible-solar-light-driven photocatalyst. Clean Technologies and Environmental Policy, 19(4), 1239-1245. https://doi.org/10.1007/s10098-016-1312-y.
|
Demirel, B., Yenigun, O., Onay, T.T., 2005. Anaerobic treatment of dairy wastewaters: A review. Process Biochemistry, 40(8), 2583-2595. https://doi.org/10.1016/j.procbio.2004.12.015.
|
Fernández-Ibáñez, P., Polo-lópez, M.I., Malato, S., Wadhwa, S., Hamilton, J.W.J., Dunlop, P.S.M., D’sa, R., Magee, E., O’shea, K., Dionysiou, D.D., Byrne, J.A., 2015. Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chemical Engineering Journal, 261, 36-44. https://doi.org/10.1016/j.cej.2014.06.089.
|
Fotiou, T., Triantis, T., Kaloudis, T., Hiskia, A., 2015. Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using TiO2. Mineralization and intermediate products. Chemosphere, 119, S89-S94. https://doi.org/10.1016/j.chemosphere.2014.04.045.
|
García-Fernández, I., Fernández-calderero, I., Polo-lópez, M.I., Fernández-ibáñez, P., 2015. Disinfection of urban effluents using solar TiO2 photocatalysis: A study of significance of dissolved oxygen, temperature, type of microorganism and water matrix. Catalysis Today, 240(2), 30-38. https://doi.org/10.1016/j.cattod.2014.03.026.
|
Gelover, S., Gómez, L.A., Reyes, K., Teresa, L.M., 2006. A practical demonstration of water disinfection using TiO2 films and sunlight. Water Research, 40(17), 3274-3280. https://doi.org/10.1016/j.watres.2006.07.006.
|
Giannakis, S., Darakas, E., Escalas-cañellas, A., Pulgarin, C., 2015. Solar disinfection modeling and post-irradiation response of Escherichia coli in wastewater. Chemical Engineering Journal, 281(2), 588-598. https://doi.org/10.1016/j.cej.2015.06.077.
|
Helali, S., Polo-lópez, M.I., Fernández-ibáñez, P., Ohtani, B., Amano, F., Malato, S., Guillard, C., 2014. Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 276, 31-40. https://doi.org/10.1016/j.jphotochem.2013.11.011.
|
Kalt, P., Birzer, C., Evans, H., Liew, A., Padovan, M., Watchman, M., 2014. A solar disinfection water treatment system for remote communities. Procedia Engineering, 78, 250-258. https://doi.org/10.1016/j.proeng.2014.07.064.
|
Khosravi, R., Hossini, H., Heidari, M., Fazlzadeh, M., Biglari, H., Taghizadeh, A., Barikbin, B., 2017. Electrochemical decolorization of reactive dye from synthetic wastewater by mono-polar Aluminum electrodes system. International Journal of Electrochemical Science, 12(6), 4745-4755. https://doi.org/10.20964/2017.06.7.5.
|
Krzemińska, D., Neczaj, E., Borowski, G., 2015. Advanced oxidation processes for food industrial wastewater decontamination. Journal of Ecological Engineering, 16(2), 61-71. https://doi.org/10.12911/22998993/1858.
|
Lawrie, K., Mills, A., Figueredo-fernández, M., Gutiérrez-alfaro, S., Manzano, M., Saladin, M., 2015. UV dosimetry for solar water disinfection (SODIS) carried out in different plastic bottles and bags. Sensors and Actuators B: Chemical, 208, 608-615. https://doi.org/10.1016/j.snb.2014.11.031.
|
Li, Y., Zhang, W., Niu, J., Chen, Y., 2012. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 6(6), 5164-5173. https://doi.org/10.1021/nn300934k.
|
Malato, S., Fernández-ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. https://doi.org/10.1016/j.cattod.2009.06.018.
|
Malato, S., Maldonado, M.I., Fernández-ibáñez, P., Oller, I., Polo, I., Sánchez-moreno, R., 2016. Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma solar de Almeria. Materials Science in Semiconductor Processing, 42(1), 15-23. https://doi.org/10.1016/j.mssp.2015.07.017.
|
McGuigan, K.G., Méndez-Hermida, F., Castro-Hermida, J.A., Ares-Mazás, E., Kehoe, S.C., Boyle, M., Sichel, C., Fernández-Ibáñez, P., Meyer, B.P., Ramalingham, S., et al., 2006. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. Journal of Applied Microbiology, 101(2), 453-463. https://doi.org/10.1111/j.1365-2672.2006.02935.x.
|
McGuigan, K.G., Conroy, R.M., Mosler, H.J., Preez, M.D., Ubomba-jaswa, E., Fernandez-ibañez, P., 2012. Solar water disinfection (SODIS): A review from bench-top to roof-top. Journal of Hazardous Materials, 235–236, 29-46. https://doi.org/10.1016/j.jhazmat.2012.07.053.
|
Méndez-Hermida, F., Ares-Mazás, E., Mcguigan, K.G., Boyle, M., Sichel, C., Fernández-Ibáñez, P., 2007. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. Journal of Photochemistry and Photobiology B: Biology, 88(2), 105-111. https://doi.org/10.1016/j.jphotobiol.2007.05.004.
|
Nalwanga, R., Quilty, B., Muyanja, C., Fernandez-Ibañez, P., Mcguigan, K.G., 2014. Evaluation of solar disinfection of E. coli under Sub-Saharan field conditions using a 25L borosilicate glass batch reactor fitted with a compound parabolic collector. Solar Energy, 100, 195-202. https://doi.org/10.1016/j.solener.2013.12.011.
|
Ndounla, J., Pulgarin, C., 2014. Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region. Science of The Total Environment, 493, 229-238. https://doi.org/10.1016/j.scitotenv.2014.05.139.
|
Oates, P.M., Shanahan, P., Polz, M.F., 2003. Solar disinfection (SODIS): Simulation of solar for global assessment and application for point-of-use water treatment in Haiti. Water Research, 37(1), 47-54. https://doi.org/10.1016/S0043-1354(02)00241-5.
|
Ortega-Gómez, E., García, B.E., Martín, M.M.B., Ibáñez, P.F., Pérez, J.A.S., 2014. Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-fenton at neutral pH. Water Research, 63(1), 316-324. https://doi.org/10.1016/j.watres.2014.05.034.
|
Pinho, S.C., Nunes, O.C., Lobo-da-cunha, A., Almeida, M.F., 2015. Inactivation of Geobacillus stearothermophilus spores by alkaline hydrolysis applied to medical waste treatment. Journal of Environmental Management, 161, 51-56. https://doi.org/10.1016/j.jenvman.2015.06.045.
|
Polo-López, M.I., Fernández-ibáñez, P., Ubomba-jaswa, E., Navntoft, C., García-fernández, I., Dunlop, P.S.M., Schmid, M., Byrne, J.A., Mcguigan, K.G., 2011. Elimination of water pathogens with solar using an automated sequential batch CPC reactor. Journal of Hazardous Materials, 196, 16-21. https://doi.org/10.1016/j.jhazmat.2011.08.052.
|
Rand, M.C., Greenberg, A.E., Taras, M.J., 1976. Standard methods for the examination of water and wastewater, fourth ed. American Public Health Association, Washington, D.C.
|
Reed, R.H., 2004. The inactivation of microbes by sunlight: Solar disinfection as a water treatment process. Advances in applied microbiology, 54, 333-366. https://doi.org/10.1016/S0065-2164(04)54012-1.
|
Sajjadi, S.A., Asgari, G., Biglari, H., Chavoshani, A., 2016. Pentachlorophenol removal by persulfate and microwave processes coupled from aqueous environments. Journal of Engineering and Applied Sciences, 11(5), 1058-1064. https://doi.org/10.3923/jeasci.2016.1058.1064.
|
Shukla, P., Fatimah, I., Wang, S.B., Ang, H.M., Tadé, M.O., 2010. Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater. Catalysis Today, 157(1-4), 410-414. https://doi.org/10.1016/j.cattod.2010.04.015.
|
Sivrio?lu, Ö., Yonar, T., 2015. Determination of the acute toxicities of physicochemical pretreatment and advanced oxidation processes applied to dairy effluents on activated sludge. Journal of Dairy Science, 98(4), 2337-2344. https://doi.org/10.3168/jds.2014-8278.
|
Zazouli, M.A., Ebrahimzadeh, M.A., Charati, J.Y., Dezfoli, A.S., Rostamali, E., Veisi, F., 2013. Effect of sunlight and ultraviolet radiation in the titanium dioxide (TiO2) nanoparticles for removal of furfural from water. J Mazand Univ Med Sci 23(107), 126-138 (in Persian).
|
Zhang, T., Wang, X.G, Zhang, X.W, 2014. Recent progress in TiO2-mediated solar photocatalysis for industrial wastewater treatment. International Journal of Photoenergy, 2014(1), 1-12. http://dx.doi.org/10.1155/2014/607954.
|