Volume 11 Issue 3
Jul.  2018
Turn off MathJax
Article Contents
Ming-wei Ma, Wen-chuan Wang, Fei Yuan, Li-liang Ren, Xin-jun Tu, Hong-fei Zang. 2018: Application of a hybrid multiscalar indicator in drought identification in Beijing and Guangzhou, China. Water Science and Engineering, 11(3): 177-186. doi: 10.1016/j.wse.2018.10.003
Citation: Ming-wei Ma, Wen-chuan Wang, Fei Yuan, Li-liang Ren, Xin-jun Tu, Hong-fei Zang. 2018: Application of a hybrid multiscalar indicator in drought identification in Beijing and Guangzhou, China. Water Science and Engineering, 11(3): 177-186. doi: 10.1016/j.wse.2018.10.003

Application of a hybrid multiscalar indicator in drought identification in Beijing and Guangzhou, China

doi: 10.1016/j.wse.2018.10.003
Funds:  This work was supported by the National Natural Science Foundation of China (Grant No. 41701022), the Open Foundation of State Key Laboratory of HydrolWen-chuan Wangogy-Water Resources and Hydraulic Engineering (Grant No. 2017491011), and the Scientific and Technical Innovation Team Foundation for Universities of Henan Province (Grant No. 18IRTSTHN009).
More Information
  • Corresponding author: Wen-chuan Wang
  • Received Date: 2018-04-13
  • Rev Recd Date: 2018-07-01

  • The Palmer drought severity index (PDSI) is physically based with multivariate concepts, but requires complicated calibration and cannot easily be used for multiscale comparison. Standardized drought indices (SDIs), such as the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI), are multiscalar and convenient for spatiotemporal comparison, but they are still challenged by their lack of physical basis. In this study, a hybrid multiscalar indicator, the standardized Palmer drought index (SPDI), was used to examine drought properties of two meteorological stations (the Beijing and Guangzhou stations) in China, which have completely different drought climatologies. The results of our case study show that the SPDI is correlated with the well-established drought indices (SPI, SPEI, and PDSI) and presents generally consistent drought/wetness conditions against multiple indicators and literature records. Relative to the PDSI, the SPDI demonstrates invariable statistical characteristics and better comparable drought/wetness frequencies over time and space. Moreover, characteristics of major drought events (drought class, and onset and end times) indicated by the SPDI are generally comparable to those detected by the PDSI. As a physically-based standardized multiscalar drought indicator, the SPDI can be regarded as an effective development of the Palmer drought indices, providing additional choices and tools for practical drought monitoring and assessment.

     

  • loading
  • Abramowitz, M., Stegun, I.A., 1965. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York.
    Alley, W.M., 1984. The Palmer drought severity index: Limitations and assumptions. Journal of Applied Meteorology. 23(7), 1100–1109. https://doi.org/10.1175/1520-0450(1984)023%3C1100:TPDSIL%3E2.0.CO;2.
    Alley, W.M., 1985. The Palmer severity drought index as a measure of hydrologic drought. Journal of American Water Resources Association. 21(1), 105–114. https://doi.org/10.1111/j.1752-1688.1985.tb05357.x.
    An, S., Xing, J., 1986. A modified Palmer’s drought index. Journal of Academy of Meteorological Science. 1(1), 75–82 (in Chinese).
    Beguería, S., Vicente-Serrano, S.M., Angulo, M., 2010. A multiscalar global drought dataset: The SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bulletin of the American Meteorological Society. 91(10), 1351–1356. https://doi.org/10.1175/2010BAMS2988.1.
    Beguería, S., Vicente-Serrano, S.M., Reig, F., Latorre, B., 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, kernel weighting, tools, datasets and drought monitoring. International Journal of Climatology. 34(10), 3001–3023. https://doi.org/10.1002/joc.3887.
    Cook, E.R., Meko, D.M., Stahle, D.W., Cleaveland, M.K., 1999. Drought reconstructions for the continental United States. Journal of Climate. 12(4), 1145–1162. https://doi.org/10.1175/1520-0442(1999)012%3C1145:DRFTCU%3E2.0.CO;2.
    Dai, A.G., Trenberth, K.E., Qian, T.T., 2004. A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology. 5(6), 1117–1130. https://doi.org/10.1175/JHM-386.1.
    Guttman, N.B., 1998. Comparing the Palmer drought index and the standardized precipitation index. Journal of American Water Resources Association. 34(1), 113–121. https://doi.org/10.1111/j.1752-1688.1998.tb05964.x.
    Guttman, N.B., 1999. Accepting the standardized precipitation index: A calculation algorithm. Journal of American Water Resources Association. 35(2), 311–322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x.
    Hao, Z.C., AghaKouchak, A., 2013. Multivariate standardized drought index: A parametric multi-index model. Advances in Water Resources. 57(9), 12–18. https://doi.org/10.1016/j.advwatres.2013.03.009.
    Hayes, M.J., Svoboda, M.D., Wilhite, D.A., Vanyarkho, O.V., 1999. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society. 80(3), 429–438. https://doi.org/10.1175/1520-0477(1999)080%3C0429: MTDUTS%3E2.0.CO;2.
    Heddinghaus, T.R., Sabol, P., 1991. A review of the Palmer drought severity index and where do we go from here? In: Proceedings of the 7th Conference on Applied Climatology of American Meteorological Society. American Meteorological Society, Salt Lake City, pp. 242–246
    Heim, R.R., 2002. A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society. 83(8), 1149–1165. https://doi.org/10.1175/1520-0477-83.8.1149.
    Kao, S.-C., Govindaraju, R.S., 2010. A copula-based joint deficit index for droughts. Journal of Hydrology. 380(1–2), 121–134. https://doi.org/10.1016/j.jhydrol.2009.10.029.
    Kotz, S., Nadarajah, S., 2000. Extreme Value Distributions: Theory and Applications. Imperial College Press, London.
    Liu, W.W., An, S.Q., Liu, G.S., Guo, A.H., 2004. The farther modification of Palmer drought severity model. Quarterly Journal of Applied Meteorology. 15(2), 207–216 (in Chinese).
    Liu, Y., Ren, L.L., Ma, M.W., Yang, X.L., Yuan, F., Jiang, S.H., 2016. An insight into the Palmer drought mechanism based indices: Comprehensive comparison of their strengths and limitations. Stochastic Environmental Research and Risk Assessment. 30(1), 119–136. https://doi.org/10.1007/s00477-015-1042-4.
    Liu, Y., Zhu, Y., Ren, L.L., Singh, V.P., Yang, X.L., Yuan, F., 2017. A multiscalar Palmer drought severity index. Geophysical Research Letters. 44(13), 6850–6858. https://doi.org/10.1002/2017GL073871.
    Lloyd-Hughes, B., Saunders, M.A., 2002. A drought climatology for Europe. International Journal of Climatology. 22(13), 1571–1592. https://doi.org/10.1002/joc.846.
    Ma, M.W., Ren, L.L., Yuan, F., Jiang, S.H., Liu, Y., Kong, H., Gong, L.Y., 2014. A new standardized Palmer drought index for hydro-meteorological use. Hydrological Processes. 28(23), 5645–5661. https://doi.org/10.1002/hyp.10063.
    Ma, M.W., Ren, L.L., Singh, V.P., Yuan, F., Chen, L., Yang, X.L., Liu, Y., 2016. Hydrologic model-based Palmer indices for drought characterization in the Yellow River Basin, China. Stochastic Environmental Research and Risk Assessment. 30(5), 1401–1420. https://doi.org/10.1007/s00477-015-1136-z.
    McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology of American Meteorological Society. American Meteorological Society, Anaheim.
    Mo, K.C., 2008. Model-based drought indices over the United States. Journal of Hydrometeorology. 9(6), 1212–1230. https://doi.org/10.1175/2008JHM1002.1.
    Palmer, W.C., 1965. Meteorological Drought, Weather Bureau Research Paper No. 45. U.S. Department of Commerce, Washington, D.C.
    Shukla, S., Wood, A.W., 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters. 35(2), L02405. https://doi.org/10.1029/2007GL032487.
    Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review. 38(1), 55–94. https://doi.org/10.2307/210739.
    Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010a. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate. 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.
    Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., Angulo, M., Kenawy, A.E., 2010b. A new global 0.5o gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer drought severity index. Journal of Hydrometeorology. 11(4), 1033–1043. https://doi.org/10.1175/2010JHM1224.1.
    Wells, N., Goddard, S., Hayes, M.J., 2004. A self-calibrating Palmer drought severity index. Journal of Climate. 17(12), 2335–2351. https://doi.org/10.1175/1520-0442(2004)017%3C2335:ASPDSI%3E2.0.CO;2.
    Wen, K., Xie, P., 2005. Chinese Meteorological Disaster Series (Beijing). Meteorological Press, Beijing (in Chinese).
    Zhang, B.Q., Zhao, X.N., Jin, J.M., Wu, P.T., 2015. Development and evaluation of a physically based multiscalar drought index: The standardized moisture anomaly index. Journal of Geophysical Research-Atmospheres. 120(22), 11575–11588. https://doi.org/10.1002/2015JD023772.
    Zhang, B.Q., He, C.S., 2016. A modified water demand estimation method for drought identification over arid and semiarid regions. Agricultural and Forest Meteorology. 230–231, 58–66. https://doi.org/10.1016/j.agrformet.2015.11.015.
    Zhang, B.Q., He, C.S., Burnham, M., Zhang, L.H., 2016. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Science of the Total Environment. 539, 436–449. https://doi.org/10.1016/j.scitotenv.2015.08.132.
    Zhang, B.Q., Wang, Z.K., Chen, G., 2017. A sensitivity study of applying a two-source potential evapotranspiration model in the Standardized Precipitation Evapotranspiration Index for drought monitoring. Land Degradation and Development. 28(2), 783–793. https://doi.org/10.1002/ldr.2548.
    Zhang, S.F., Su, Y.S., Song, D.D., Zhang, Y.Y., Song, H.Z., Gu, Y., 2008. The Historical Droughts in China: 1949–2000. Hohai University Press, Nanjing (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (583) PDF downloads(610) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return