Citation: | Armin Azad, Hojat Karami, Saeed Farzin, Sayed-Farhad Mousavi, Ozgur Kisi. 2019: Modeling river water quality parameters using modified adaptive neuro fuzzy inference system. Water Science and Engineering, 12(1): 45-54. doi: 10.1016/j.wse.2018.11.001 |
Adriaenssens, V., Baets, B.D., Goethals, P.L.M., Pauw, N.D., 2004. Fuzzy rule-based models for decision support in ecosystem management. Science of the Total Environment, 319(1-3), 1-12. https://doi.org/10.1016/S0048-9697(03)00433-9.
|
Ay, M., Kisi, Ö., 2017. Estimation of dissolved oxygen by using neural networks and neuro fuzzy computing techniques. KSCE Journal of Civil Engineering, 21(5), 1631-1639. https://doi.org/10.1007/s12205-016-0728-6.
|
Azad, A., Karami, H., Farzin, S., Saeedian, A., Kashi, H., Sayyahi, F., 2018a. Prediction of water quality parameters using ANFIS optimized by intelligence algorithms (Case study: Gorganrood River). KSCE Journal of Civil Engineering, 22(7), 2206-2213. https://doi.org/10.1007/s12205-017-1703-6.
|
Azad, A., Mousavi, S.F., Karami, H., Farzin, S., Singh, V.P. 2018b. The effect of vermiculite and quartz in porous concrete on reducing storm-runoff pollution. ISH Journal of Hydraulic Engineering. https://doi.org/10.1080/09715010.2018.1528482.
|
Azad, A., Manoochehri, M., Kashi, H., Farzin, S., Karami, H., Nourani, V., Shiri, J., 2019. Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling. Journal of Hydrology, 571, 214-221. https://doi.org/10.1016/j.jhydrol.2019.01.062.
|
Barzegar, R., Moghaddam, A.A., Adamowski, J., Ozga-Zielinski, B., 2017. Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stochastic Environmental Research and Risk Assessment, 32(3), 799-813. https://doi.org/10.1007/s00477-017-1394-z.
|
Dogan, E., Sengorur, B., Koklu, R., 2009. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. Journal of Environmental Management, 90(2), 1229-1235. https://doi.org/10.1016/j.jenvman.2008.06.004.
|
Dorigo, M. 1992. Optimization, Learning and Natural Algorithms. Ph. D. Dissertation. Dipartimento di Elettronica, Politecnico di Milano (in Italian).
|
Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, Nagoya, pp. 39-43. https://doi.org/10.1109/MHS.1995.494215.
|
Emamgholizadeh, S., Kashi, H., Marofpoor, I., Zalaghi, E., 2014. Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models. International Journal of Environmental Science and Technology, 11(3), 645-656. https://doi.org/10.1007/s13762-013-0378-x.
|
He, J.P., Jiang, Z.X., Zhao, C., Peng, Z.Q., Shi, Y.Q., 2018. Cloud-Verhulst hybrid prediction model for dam deformation under uncertain conditions. Water Science and Engineering, 11(1), 61-67. https://doi.org/10.1016/j.wse.2018.03.002.
|
Heidarzadeh, N., 2017. A practical low-cost model for prediction of the groundwater quality using artificial neural networks. Journal of Water Supply: Research and Technology-Aqua, 66(2), 86-95. https://doi.org/10.2166/aqua.2017.035.
|
Jalalkamali, A., 2015. Using of hybrid fuzzy models to predict spatiotemporal groundwater quality parameters. Earth Science Informatics, 8(4), 885-894. https://doi.org/10.1007/s12145-015-0222-6.
|
Jang, J.S., 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541.
|
Kisi, O., Keshavarzi, A., Shiri, J., Zounemat-Kermani, M., Omran, E.S.E., 2017a. Groundwater quality modeling using neuro-particle swarm optimization and neuro-differential evolution techniques. Hydrology Research, 48(6), 1508-1519. https://doi.org/10.2166/nh.2017.206.
|
Kisi, O., Alizamir, M., Zounemat-Kermani, M., 2017b. Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data. Natural Hazards, 87(1), 367-381. https://doi.org/10.1007/s11069-017-2767-9.
|
Kisi, O., Azad, A., Kashi, H., Saeedian, A., Hashemi, S.A.A., Ghorbani, S., 2019. Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods. Water Resources Management, 33(2), 847-861. https://doi.org/10.1007/s11269-018-2147-6.
|
May, D. B., Sivakumar, M., 2009. Prediction of urban stormwater quality using artificial neural networks. Environmental Modelling and Software, 24(2), 296-302. https://doi.org/10.1016/j.envsoft.2008.07.004.
|
Mirrashid, M., 2014. Earthquake magnitude prediction by adaptive neuro-fuzzy inference system (ANFIS) based on fuzzy C-means algorithm. Natural Hazards, 74(3), 1577-1593. https://doi.org/10.1007/s11069-014-1264-7.
|
Nadaf Fahmideh, S., Allahyari, M.S., Damalas, C.A., Masouleh, Z.D., Ghazi, M., 2017. Predicting adoption of double cropping in paddy fields of northern Iran: A comparison of statistical methods. Paddy and Water Environment, 15(4), 907-917. https://doi.org/10.1007/s10333-017-0601-3.
|
Nguyen, V., Li, Q., Nguyen, L., 2017. Drought forecasting using ANFIS-a case study in drought prone area of Vietnam. Paddy and Water Environment, 15(3), 605-616. https://doi.org/10.1007/s10333-017-0579-x.
|
Nie, S.Y., Bian, J.M., Wan, H.L., Sun, X.Q., Zhang, B.J., 2017. Simulation and uncertainty analysis for groundwater levels using radial basis function neural network and support vector machine models. Journal of Water Supply: Research and Technology-Aqua, 66(1), 15-24. https://doi.org/10.2166/aqua.2016.069.
|
Olyaie, E., Banejad, H., Chau, K.W., Melesse, A.M., 2015. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States. Environmental Monitoring and Assessment, 187(4), 189. https://doi.org/10.1007/s10661-015-4381-1.
|
Orzepowski, W., Paruch, A. M., Kowalczyk, T., Pok?adek, R., Pulikowski, K., 2017. Modelling of water reserves in mineral soils with different retention properties. Water and Environment Journal, 31(3), 388-400. https://doi.org/10.1111/wej.12255.
|
Rezaei, F., Safavi, H.R., Ahmadi, A., 2013. Groundwater vulnerability assessment using fuzzy logic: A case study in the Zayandehrood aquifers. Environmental Management, 51(1), 267-277. https://doi.org/10.1007/s00267-012-9960-0.
|
Socha, K., Dorigo, M., 2008. Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. https://doi.org/10.1016/j.ejor.2006.06.046.
|
Tabari, M.M.R., 2016. Prediction of river runoff using fuzzy theory and direct search optimization algorithm coupled model. Arabian Journal for Science and Engineering, 41(10), 4039-4051. https://doi.org/10.1007/s13369-016-2081-y.
|
Taormina, R., Chau, K.W., 2015. Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and extreme learning machines. Journal of Hydrology, 529, 1617-1632. https://doi.org/10.1016/j.jhydrol.2015.08.022.
|
Wang, W.C., Xu, D.M., Chau, K.W., Lei, G.J., 2014. Assessment of river water quality based on theory of variable fuzzy sets and fuzzy binary comparison method. Water Resources Management, 28(12), 4183-4200. https://doi.org/10.1007/s11269-014-0738-4.
|
Wu, C.L., Chau, K.W., 2011. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, 399(3-4), 394-409. https://doi.org/10.1016/j.jhydrol.2011.01.017.
|
Zadeh, L.A., 1965. Information and control. Fuzzy Sets, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.
|