Volume 11 Issue 4
Oct.  2018
Turn off MathJax
Article Contents
Shi-lei Zhou, Yue Sun, Yi-ran Zhang, Ting-lin Huang, Zai-xing Li, Kai-kai Fang, Chun-hua Zhang. 2018: Variations in microbial community during nitrogen removal by in situ oxygen-enhanced indigenous nitrogen-removal bacteria. Water Science and Engineering, 11(4): 276-287. doi: 10.1016/j.wse.2018.12.005
Citation: Shi-lei Zhou, Yue Sun, Yi-ran Zhang, Ting-lin Huang, Zai-xing Li, Kai-kai Fang, Chun-hua Zhang. 2018: Variations in microbial community during nitrogen removal by in situ oxygen-enhanced indigenous nitrogen-removal bacteria. Water Science and Engineering, 11(4): 276-287. doi: 10.1016/j.wse.2018.12.005

Variations in microbial community during nitrogen removal by in situ oxygen-enhanced indigenous nitrogen-removal bacteria

doi: 10.1016/j.wse.2018.12.005
Funds:  This work was supported by the National Science and Technology Pillar Program (Grant No. 2012BAC04B02) and the National Natural Science Foundation of China (Grant No. 51478378).
More Information
  • Corresponding author: Ting-lin Huang
  • Received Date: 2017-12-28
  • Rev Recd Date: 2018-09-09
  • In this study, the enclosure system exhibited perfect nitrogen removal performance with in situ oxygen-enhanced indigenous aerobic denitrifying bacteria in an enclosure experiment. We explored changes in the microbial community during the nitrogen removal process using the MiSeq high-throughput sequencing technology. The results revealed a total of 7974 and 33653 operational taxonomic units (OTUs) for water and sediment systems, respectively, with 97% similarity. The OTUs were found to be affiliated with eight main phyla (Proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, Firmicutes, and Actinobacteria). The diversity of the enhanced system was found to be higher than that of the control system. Principal component analysis (PCA) revealed that significant spatial and temporal differences were exhibited in the microbial community during nitrogen removal in the enclosure experiment. Redundancy analysis (RDA) indicated that physical parameters (temperature, dissolved oxygen, and pH), nitrogen (total nitrogen and nitrate), functional genes (nirK and nirS), and dissolved organic carbon (DOC) were the most important factors affecting bacterial community function and composition. Lastly, the results suggested that the variation in the microbial community could be analyzed through the MiSeq high-throughput sequencing technology, which may provide technical support for future field tests.

     

  • loading
  • Beutel, M.W., Horne, A.J., 1999. A review of the effects of hypolimnetic oxygenation on lake and reservoir water quality. Lake Reserv. Manage. 15(4), 285-297. http://doi.org/10.1080/07438149909354124.
    Bryant, L.D., Hsu-Kim, H., Gantzer, P.A., Little, J.C., 2011. Solving the problem at the source: Controlling Mn release at the sediment-water interface via hypolimnetic oxygenation. Water Res. 45(19), 6381-6392. https://doi.org/10.1016/j.watres.2011.09.030
    Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., Smith, V.H., 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8(3), 559-568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
    Chai, B.B., Huang, T.L., Zhu, W.H., Yang, F.Y., 2011. A new method of inhibiting pollutant release from source water reservoir sediment by adding chemical stabilization agents combined with water-lifting aerator. J. Environ. Sci. 23(12), 1977-1982. https://doi.org/10.1016/S1001-0742(10)60661-4.
    Chen, F., Xia, Q., Ju, L.K., 2003. Aerobic denitrification of Pseudomonas aeruginosa monitored by online NAD(P)H fluorescence. Appl. Environ. Micro. 69(11), 6715-6722. https://doi.org/10.1128/AEM.69.11.6715-6722.2003.
    Chinese National Environmental Protection Agency (CNEPA), 2002. Water and Wastewater Monitoring Methods. China Environmental Science Press, Beijing (in Chinese).
    Coban, O., Kuschk, P., Kappelmeyer, U., Spott, O., Martienssen, M., Jetten, M.S.M., Knoeller, K., 2015. Nitrogen transforming community in a horizontal subsurface-flow constructed wetland. Water Res. 74(1), 203-212. https://doi.org/10.1016/j.watres.2015.02.018.
    Cong, H.B., Huang, T.L., Zhao, J.W., Zhou, Z.M., He, W.J., Han, H.D., 2006. Application of the technology of lifting water and aeration for improving water quality. Environmental Pollution and Control. 28(3), 215-218. https://doi.org/10.15985/j.cnki.1001-3865.2006.03.016.
    Cong, H.B., Huang, T.L., Chai, B.B., Zhao, J.W., 2009. A new mixing-oxygenating technology for water quality improvement of urban water source and its implication in a reservoir. Renew. Energ. 34(9), 2054-2060. https://doi.org/10.1016/j.renene.2009.02.007.
    Fouts, D.E., Szpakowski, S., Purushe, J., Torralba, M., Waterman, R.C., MacNeil, M.D., Alexander, L.J., Nelson, K.E., 2012. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PloS one 7(11), e48289. https://doi.org/10.1371/journal.pone.0048289.
    Gantzer, P.A., Bryant, L.D., Little, J.C., 2009. Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation. Water Res. 43(5), 1285-1294. https://doi.org/10.1016/j.watres.2008.12.019.
    Gao, H., Schreiber, F., Collins, G., Jensen, M.M., Kostka, J.E., Lavik, G., de Beer, D., Zhou, H., Kuypers, M.M., 2010. Aerobic denitrification in permeable Wadden Sea sediments. ISME J. 4(3), 417-426. https://doi.org/10.1038/ismej.2010.166.
    Gerling, A.B., Browne, R.G., Gantzer, P.A., Mobley, M.H., Little, J.C., Carey, C.C., 2014. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir. Water Res. 67(15), 129-143.https://doi.org/10.1016/j.watres.2014.09.002.
    Hallin, S., Lindgren, P.-E., 1999. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol. 65(4), 1652-1657.https://doi.org/10.2478/v10006-011-0029-7.
    Heylen, K., Vanparys, B., Wittebolle, L., Verstraete, W., Boon, N., de Vos, P., 2006. Cultivation of denitrifying bacteria: Optimization of isolation conditions and diversity study. Appl. Environ. Micro. 72(4), 2637-2643. https://doi.org/10.1128/AEM.72.4.2637-2643.2006.
    Heylen, K., Lebbe, L., de Vos, P., 2008. Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. Int. J. Syst. Evol. Microbiol. 58(1), 73-77. https://doi.org/10.1099/ijs.0.65387-0.
    Huang, T.L., Wei, W., Su, J.F., Zhang, H.H., Li, N., 2012. Denitrification performance and microbial community structure of a combined WLA-OBCO system. PloS one 7(11), e48339. https://doi.org/10.1371/journal.pone.0048339.
    Huang, T.L., 2015. Water Pollution and Water Quality Control of Selected Chinese Reservoir Basins. Springer, Belin.http://doi.org/10.1007/978-3-319-20391-1.
    Huang, T.L., Zhou, S.L., Zhang, H.H., Bai, S.Y., He, X.X., Yang, X., 2015a. Nitrogen removal characteristics of a newly isolated indigenous aerobic denitrifier from oligotrophic drinking water reservoir, Zoogloea sp. N299. Int. J. Mol. Sci. 16(5), 10038-10060. https://doi.org/10.3390/ijms160510038.
    Huang, T.L., Zhou, S.L., Zhang, H.H., Zhou, N., Guo, L., Di, S., Zhou, Z., 2015b. Nitrogen removal from micro-polluted reservoir water by indigenous aerobic denitrifiers. Int. J. Mol. Sci. 16(4), 8008-8026. https://doi.org/10.3390/ijms16048008.
    Jiang, K., Sanseverino, J., Chauhan, A., Lucas, S., Copeland, A., Lapidus, A., Del Rio, T.G., Dalin, E., Tice, H., Bruce, D., 2012. Complete genome sequence of Thauera aminoaromatica strain MZ1T. Stand. Genomic Sci. 6(3), 325-335. https://doi.org/10.4056/sigs.2696029.
    Kim, H.G., Han, G.H., Kim, D., Choi, J.S., Kim, S.W., 2012. Comparative analysis of two types of methanol dehydrogenase from Methylophaga aminisulfidivorans MPT grown on methanol. J. Basic Microb. 52(2), 141-149. https://doi.org/10.1002/jobm.201000479.
    Kim, J.K., Park, K.J., Cho, K.S., Nam, S.-W., Park, T.-J., Bajpai, R., 2005. Aerobic nitrification-denitrification by heterotrophic Bacillus strains. Bioresour. Technol. 96(17), 1897-1906. https://doi.org/10.1016/j.biortech.2005.01.040.
    Kim, M., Jeong, S.-Y., Yoon, S.J., Cho, S.J., Kim, Y.H., Kim, M.J., Ryu, E.Y., Lee, S.-J., 2008. Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios. J. Biosci. Bioeng. 106(5), 498-502. https://doi.org/10.1263/jbb.106.498.
    Kornaros, M., Zafiri, C., Lyberatos, G., 1996. Kinetics of denitrification by Pseudomonas denitrificans under growth conditions limited by carbon and/or nitrate or nitrite. Water Environ. Res. 68(5), 934-945. https://doi.org/10.2175/106143096X127947.
    Ligi, T., Oopkaup, K., Truu, M., Preem, J.-K., Nõlvak, H., Mitsch, W.J., Mander, Ü., Truu, J., 2014. Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing. Ecol. Eng. 72, 56-66. https://doi.org/10.1016/j.ecoleng.2013.09.007.
    Loman, N.J., Misra, R.V., Dallman, T.J., Constantinidou, C., Gharbia, S.E., Wain, J., Pallen, M.J., 2012. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30(5), 434-439. https://doi.org/10.1038/nbt2198.
    Lukow, T., Diekmann, H., 1997. Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1. Biotechnol. Lett. 19(11), 1157-1159. https://doi.org/10.1023/A:1018465232392.
    Miyahara, M., Kim, S.-W., Fushinobu, S., Takaki, K., Yamada, T., Watanabe, A., Miyauchi, K., Endo, G., Wakagi, T., Shoun, H., 2010. Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Appl. Environ. Micro. 76(14), 4619-4625. https://doi.org/10.1128/AEM.01983-09.
    Neufeld, J.D., Schäfer, H., Cox, M.J., Boden, R., McDonald, I.R., Murrell, J.C., 2007. Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J. 1(6), 480-491. https://doi.org/10.1038/ismej.2007.65.
    Patureau, D., Zumstein, E., Delgenes, J., Moletta, R., 2000. Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb. Ecol. 39(2), 145-152. https://doi.org/10.1007/s002480000009.
    Quince, C., Lanzen, A., Davenport, R.J., Turnbaugh, P.J., 2011. Removing noise from pyrosequenced amplicons. BMC bioinformatics 12(1), 1-18. https://doi.org/10.1186/1471-2105-12-38.
    Ravel, J., Gajer, P., Abdo, Z., Schneider, G.M., Koenig, S.S., McCulle, S.L., Karlebach, S., Gorle, R., Russell, J., Tacket, C.O., 2011. Vaginal microbiome of reproductive-age women. P. Natl. A. Sci. 108(s1), 4680-4687. https://doi.org/10.1073/pnas.1002611107.
    Robertson, L.A., Kuenen, J.G., 1983. Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. Microbiology 129(9), 2847-2855. https://doi.org/10.1099/00221287-129-9-2847.
    Shen, Y.Z., Qiu, J.L., Hong, Q., Chen, L., 2014. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Sci. Total Environ. 493, 138-146. https://doi.org/10.1016/j.scitotenv.2014.05.109.
    Šmilauer, P., Lepš, J., 2014. Multivariate Analysis of Ecological Data using CANOCO 5. Cambridge University Press, Cambridge. http://doi.org/10.2136/vzj2004.1057.
    Su, J-Y., Liu B-Y., Liu C-Y., 2001. Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system. J. Appl. Microbiol. 90(3), 457-462.https://doi.org/10.1046/j.1365-2672.2001.01265.x.
    Su, X.X., Wang, H., Zhang, Y.L., 2013. Health risk assessment of nitrate contamination in groundwater: A case study of an agricultural area in northeast China. Water Resour. Manag. 27(8), 3025-3034. https://doi.org/10.1007/s11269-013-0330-3.
    Takaya, N., Catalan-Sakairi, M.A.B., Sakaguchi, Y., Kato, I., Zhou, Z., Shoun, H., 2003. Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl. Environ. Micro. 69(6), 3152-3157. https://doi.org/10.1128/AEM.69.6.3152-3157.2003.
    Throbäck, I.N., Enwall, K., Jarvis, Å., Hallin, S., 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49(3), 401-417. https://doi.org/10.1016/j.femsec.2004.04.011.
    Willems, A., Falsen, E., Pot, B., Jantzen, E., Hoste, B., Vandamme, P., Gillis, M., Kersters, K., de Ley, J., 1990. Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int. J. Syst. Evol. Microbiol. 40(4), 384-398. https://doi.org/10.1099/00207713-40-4-384.
    Yan, Q., Bi, Y., Deng, Y., He, Z., Wu, L., van Nostrand, J.D., Shi, Z., Li, J., Wang, X., Hu, Z., 2015. Impacts of the Three Gorges Dam on microbial structure and potential function. Sci. Rep-UK, 5, 8605. https://doi.org/10.1038/srep08605.
    Zhao, W., Hao, R., Wang, R., Du, P., 2015. Denitrification of composite carbon filler and character of microbial community. China Environ. Sci. 35(10), 3003-3009 (in Chinese).
    Zhou, S.L., Huang, T.L., Ngo, H.H., Zhang, H.H., Liu, F., Zeng, M.Z., Shi, J.C., Qiu, X.P., 2016a. Nitrogen removal characteristics of indigenous aerobic denitrifiers and changes in the microbial community of a reservoir enclosure system via in situ oxygen enhancement using water lifting and aeration technology. Bioresour. Technol. 214, 63-73. https://doi.org/10.1016/j.biortech.2016.04.071.
    Zhou, S.L., Huang, T.L., Zhang, H.H., Zeng, M.Z, Liu, F., Bai, S.Y., Shi, J.C., Qiu, X.P., Yang, X., 2016b. Nitrogen removal characteristics of enhanced in situ indigenous aerobic denitrification bacteria for micro-polluted reservoir source water. Bioresour. Technol. 201, 195-207. https://doi.org/10.1016/j.biortech.2015.11.041.
    Zhu, M., Zhu, G., Zhao, L., Yao, X., Zhang, Y., Gao, G., Qin, B., 2013. Influence of algal bloom degradation on nutrient release at the sediment-water interface in Lake Taihu, China. Environ. Sci. Pollut. R. 20(3), 1803-1811. https://doi.org/10.1007/s11356-012-1084-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (668) PDF downloads(545) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return