Citation: | Ikha Magdalena, Iryanto, Dominic E. Reeve. 2018: Free-surface long wave propagation over linear and parabolic transition shelves. Water Science and Engineering, 11(4): 318-327. doi: 10.1016/j.wse.2019.01.001 |
Bautista,E.G., Arcos, E., Bautista, O.E., 2011. Propagation of ocean waves over a shelf with linear transition. Mechanica Computacional, (4), 225-242.
|
Beji, S., Nadoaka, K., 1997. A time-dependent nonlinear mild slope equation for water waves.Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453(1957),319-332. https://doi.org/10.1098/rspa.1997.0018.
|
Bender, C.M., Orszag, S.A., 1978. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York.
|
Berkhoff, J.C.W., 1972. Computation of combined refraction: Diffraction. In: Proceeding of 13th International Conference on Coastal Engineering, ASCE, pp. 55-69, https://doi.org/10.1061/9780872620490.027.
|
Carrier, G.F., 1966.Gravity waves of water of variable depth. J. Fluid Mech.,24(4), 641-659. https://doi.org/10.1017/S0022112066000892.
|
Copeland, G.J.M., 1985. A practical alternative to the mild-slope equation. Coastal Engineering, 9(2), 125-149. https://doi.org/10.1016/0378-3839(85)90002-X.
|
Dalrymple, R.A., Suh, K.D., Kirby, J.T., Chae, J.W., 1989. Models for very wide-angle water waves and wave diffraction, Part 2: Irregular bathymetry. J. Fluid Mech., 201, 299-322. https://doi.org/10.1017/S0022112089000959.
|
Ebersole, B.A., 1985. Refraction-diffraction model for linear water wave. Journal of Waterway, Port, Coastal, and Ocean Engineering, 111(6), 939-953. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:6(939).
|
Kajiura, K., 1961. On the partial reflection of water waves passing over a bottom of variable depth.In: Proceedings ofthe Tsunami Meetings 10th Pacific Science Congress, IUGG, pp.206-234.
|
Kim, H.-S., Jung, B.-S., Lee, Y.-W., 2009. A linear wave equation over mild-sloped bed from double integration. Journal of the Korean Society for Marine Environment & Enrgy, 12(3), 165-172.
|
Kirby, J.T., 1986. On the gradual reflection of weakly nonlinear Stokes waves in regions of varying topography. J. Fluid Mech., 162, 187-209. https://doi.org/10.1017/S0022112086002008.
|
Kowalik, Z., 1993. Solution of the linear shallow water equations by the fourth-order leapfrog scheme. JGR: Oceans, 98(C6), 10205-10209. https://doi.org/10.1029/93JC00652.
|
Kowalik, Z., 2012. Introduction to Numerical Modeling of Tsunami Waves. University of Alaska, Fairbanks.
|
Kristina, W., van Groesen, B., Bokhove, O., 2013. Modelling of tsunami wave run-up over sloping bathymetry using effective boundary conditions. In: EGU Genereal Assembly Conference Abstracts, Vol. 15, p.453.
|
Li, B., Anastasiou, K., 1992. Efficient elliptic solvers for the mild-slope equation using the multigrid technique. Coastal Engineering, 16(3), 245-266. https://doi.org/10.1016/0378-3839(92)90044-U.
|
Li, B., Reeve, D.E., Fleming, C.A., 1993. Numerical solution of the elliptic mild-slope equation for irregular wave propagation. Coastal Engineering, 20(1-2),85-100. https://doi.org/10.1016/0378-3839(93)90056-E.
|
Lin, P.Z., Liu, P.L.-F., 1998. A numerical study of breaking waves in the surf zone. J. Fluid Mech., 359, 239-264. https://doi.org/10.1017/S002211209700846X.
|
Madsen, P.A., Bingham, H.B., Liu, H., 2002. A new Boussinesq method for fully nonlinear waves from shallow to deep water, J. Fluid Mech., 462, 1-30. https://doi.org/10.1017/S0022112002008467.
|
Magdalena, I., Erwina, N., Pudjaprasetya, S.R., 2015. Staggered momentum conservative scheme for radial dam break simulation. J. Sci. Comp., 65(3), 867-874. https://doi.org/10.1007/s10915-015-9987-5.
|
Mei, C.C., Stiassne, M., Yue, D.K.-P., 2005. Theory and applications of ocean surface waves. In: Advanced Series on Ocean Engineering: Vol. 23, World Scientific. https://doi.org/10.1142/5566.
|
Nielson, P. 1983. Analytical determination of nearshore wave height variation due to refraction, shoaling and friction. CoastalEngineering, 7(3), 233-251. https://doi.org/10.1016/0378-3839(83)90019-4.
|
Nielson, P., 1984. Explicit solutions to practical wave problems. In: Proceedings of the International Conference of 19th Coastal Engineering Conference, Houston, pp. 968-982.
|
Noviantri, V., Pudjaprasetya, S.R., 2010. The relevance of wavy beds as shoreline protection. In: Proceedings of 13th Asian Congress of Fluid Mechanics, pp.489-492.
|
Nwogu, O., 1993. Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway,Port,Coastal, and Ocean Engineering, 119(6), 618-638. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618).
|
Panchang, V., Cushman-Roisin, B., Pearce, B., 1988. Combined refraction-diffraction of short-waves in large coastal regions. Coastal Engineering, 12(2), 133-156. https://doi.org/10.1016/0378-3839(88)90002-6.
|
Pudjaprasetya, S.R., Magdalena, I., 2014. Momentum conservative schemes for shallow water flows. East Asian Journal on Applied Mathematics, 4(2), 152-165.https://doi.org/10.4208/eajam.290913.170314a.
|
Radder, A.C., 1979. On the parabolic equation method for water-wave propagation, J. Fluid Mech., 95(1), 159-176. https://doi.org/10.1017/S0022112079001397.
|
Reeve, D.E., 1992. Bathymetric generation of an angular wave spectrum. Wave Motion, 16(3), 217-228. https://doi.org/10.1016/0165-2125(92)90030-6.
|
Sadeghian, H., Peyman, B., 2012. Analytical solution of wave shoaling based on cnoidal wave theory. In: Proceedings of 9th International Conference on Coasts, Ports and Marine Structures, Tehran.
|
Smith, R., Sprinks, T., 1975. Scattering of surface waves by a conical island. J. Fluid Mech., 72(2), 373-384. https://doi.org/10.1017/S0022112075003424.
|
Stosius, R., Beyerle, G., Helm, A., Hoechner, A., Wickert, J., 2010. Simulation of space-borne tsunami detection using GNSS: Reflectometry applied to tsunamis in the Indian Ocean. Natural Hazards and Earth System Sciences, 10, 1359-1372. https://doi.org/10.5194/nhess-10-1359-2010.
|
Suh, K.D., Dalrymple, R.A., Kirby, J.T., 1990, An angular spectrum model for propagation of Stokes waves, J. Fluid Mech., 221, 205-232. https://doi.org/10.1017/S0022112090003548.
|
Synolakis, C.E., 1987. The runup of solitary waves. J. Fluid Mech., 185, 523-545. https://doi.org/10.1017/S002211208700329X.
|