Citation: | Juan Pinos, Luis Timbe. 2019: Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Science and Engineering, 12(1): 11-18. doi: 10.1016/j.wse.2019.03.001 |
Archambeau, P., Dewals, B.J., Erpicum, S., Mouzelard, T., Pirotton, M., 2002. Wolf software: A fully integrated device applied to modelling gradual dam failures and assessing subsequent risks. In: Rahman, M., Verhoeven, R., Brebbia, C.A., eds., Advances in Fluid Mechanics IV. WIT Press, Southampton pp. 259-268.
|
Bates, P.D., De Roo, A.P.J., 2000. A simple raster-based model for flood inundation simulation. Journal of Hydrology 236(1-2), 54-77. https://doi.org/10.1016/S0022-1694(00)00278-X.
|
Beck, J., 2016. Comparison of three methodologies for quasi-2D river flood modeling with SWMM5. Journal of Water Management Modeling https://doi.org/10.14796/JWMM.C402.
|
Bladé, E., Cea, L., Corestein, G., 2014a. Numerical modelling of river inundations. Ingeniería del Agua 18(1), 71-82. https://doi.org/10.4995/ia.2014.3144.
|
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A., 2014b. Iber: River modelling simulation tool. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004.
|
Brunner, G.W., 2016. HEC-RAS River Analysis System, Hydraulic Reference Manual (Version 5). US Army Corps of Engineers, Davis.
|
Casas, A., Benito, G., Thorndycraft, V.R., Rico, M., 2006. The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms 31(4), 444-456. https://doi.org/10.1002/esp.1278.
|
Cook, A., Merwade, V., 2009. Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. Journal of Hydrology 377(1-2), 131-142. https://doi.org/10.1016/j.jhydrol.2009.08.015.
|
Evans, W., Kirkpatrick, D., Townsend, G., 2001. Right-triangulated irregular networks. Algorithmica 30(2), 264-286. https://doi.org/10.1007/s00453-001-0006-x.
|
Hartnett, M., Nash, S., 2017, High-resolution flood modeling of urban areas using MSN_Flood. Water Science and Engineering 10(3), 175-183. https://doi.org/10.1016/j.wse.2017.10.003.
|
Hervouet, J.M., 2000. TELEMAC modelling system: An overview. Hydrological Processes 14, 2209-2210. https://doi.org/10.1002/1099-1085(200009)14:13<2209::AID-HYP23>3.0.CO;2-6.
|
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., Kanae, S., 2013. Global flood risk under climate change. Nature Climate Change 3(9), 816. https://doi.org/10.1038/nclimate1911.
|
Horritt, M.S., Bates, P.D., 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology 268(1-4), 87-99. https://doi.org/10.1016/S0022-1694(02)00121-X.
|
Hunter, N.M., Bates, P.D., Neelz, S., Pender, G., Villanueva, I., Wright, N.G., Liang, D., Falconer, R.A., Lin, B., Waller, S., et al., 2008. Benchmarking 2D hydraulic models for urban flood simulations. Proceedings of the Institution of Civil Engineers: Water Management 161(1), 13-30. http://dx.doi.org/10.1680/wama.2008.161.1.13.
|
Instituto Nacional de Meteorología e Hidrología (INAMHI), 2015. Meteorological Yearbook No. 52-2012. INAMHI, Quito (in Spanish).
|
Jacobs, 2018. Flood Modeller: Online Manual. http://help.floodmodeller.com/floodmodeller/[Retrieved July 2018].
|
Jamieson, S.R., Lhomme, J., Wright, G., Gouldby, B., 2012. A highly efficient 2D flood model with sub-element topography. Proceedings of the Institution of Civil Engineers: Water Management 165(10), 581-595. https://doi.org/10.1680/wama.12.00021.
|
Li, J., Wong, D.W.S., 2010. Effects of DEM sources on hydrologic applications. Computers, Environment and Urban Systems 34(3), 251-261. https://doi.org/10.1016/j.compenvurbsys.2009.11.002.
|
Merwade, V., Olivera, F., Arabi, M., Edleman, S., 2008. Uncertainty in flood inundation mapping: Current issues and future directions. Journal of Hydrologic Engineering 13(7), 608-620. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(608).
|
Papaioannou, G., Loukas, A., Vasiliades, L., Aronica, G.T., 2016. Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. Natural Hazards 83(1), 117-132. https://doi.org/10.1007/s11069-016-2382-1.
|
Rossman, L.A., 2006. Storm Water Management Model Quality Assurance Report: Dynamic Wave Flow Routing. United States Environmental Protection Agency, Cincinnati.
|
Secretaría Nacional del Agua (SENAGUA), 2014. Vulnerability Assessment to Flood Events of the Santa Bárbara River, Volume 2: Hydraulic Study. SENAGUA, Quito, p. 108 (in Spanish).
|
ShahiriParsa, A., Noori, M., Heydari, M., Rashidi, M., 2016. Floodplain zoning simulation by using HEC-RAS and CCHE2D models in the Sungai Maka River. Air, Soil and Water Research (9), 55-62. https://doi.org/10.4137/ASWR.S36089.
|
Syme, W.J., 2001. TUFLOW: Two & one-dimensional unsteady flow software for rivers, estuaries and coastal waters. In: Proceedings of IEAust Water Panel Seminar and Workshop on 2D Flood Modelling, Sydney.
|
Tayefi, V., Lane, S.N., Hardy, R.J., Yu, D., 2007. A comparison of one- and two-dimensional approaches to modelling flood inundation over complex upland floodplains. Hydrological Processes 21(23), 3190-3202. https://doi.org/10.1002/hyp.6523.
|
Wang, Y., Zheng, T., 2005. Comparison of light detection and ranging and national elevation dataset digital elevation model on floodplains of North Carolina. Natural Hazards Review 6(1), 34-40. https://doi.org/10.1061/(ASCE)1527-6988(2005)6:1(34).
|