Citation: | Qun-chao Wang, Shu-gen Liu, Hua-ping Ga. 2019: Treatment of hydroxyquinone-containing wastewater using precipitation method with barium salt. Water Science and Engineering, 12(1): 55-61. doi: 10.1016/j.wse.2019.03.003 |
Anjaneyulu, Y., Chary, N.S., Raj, D.S.S., 2005. Decolourization of industrial effluents-available methods and emerging technologies: A review. Rev. Environ. Sci. Biotechnol. 4(4), 245–273. https://doi.org/10.1007/s11157-005-1246-z.
|
Ayed, L., Mahdhi, A., Cheref, A., Bakhrouf, A., 2011. Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: Biotoxicity and metabolites characterization. Desalination 274(1–3), 272–277. https://doi.org/10.1016/ j.desal.2011.02.024.
|
Bilinska, L., Gmurek, M., Ledakowicz, S., 2016. Comparison between industrial and simulated textile wastewater treatment by AOPs: Biodegradability, toxicity and cost assessment. Chemical Engineering Journal 306, 550–559. https://doi.org/10.1016/j.cej.2016.07.100.
|
Cai, L., Xu, T., Shen, J.Y., Xiang, W.X., 2015. Highly efficient photocatalytic treatment of mixed dyes wastewater via visible-light-driven AgI-Ag3PO4/MWCNTs. Mater. Sci. Semiconductor Processing 37, 19–28. https://doi.org/10.1016/j.mssp.2014.12.064.
|
Fang, Z.D., Zhang, K., Liu, J., Fan, J.Y., Zhao, Z.W., 2017., Fenton-like oxidation of azo dye in aqueous solution using magnetic Fe3O4-MnO2 nanocomposites as catalysts. Water Science and Engineering, 11(1), 17–22. https://doi.org/10.1016/j.wse.2017.10.005.
|
Furkan, M., Alama, M.T., Rizvi, A., Khana, K., Naeem, A., 2017. Aloe emodin, an anthroquinone from Aloe vera acts as an anti aggregatory agent to the thermally aggregated hemoglobin. Spectrochimica Acta, Part A: Molecular and Bimolecular Spectroscopy 179, 188–193. https://doi.org/10.1016/j.saa.2017.02.014.
|
Ge, Y.Z., Jin, H., 1995. Recovery of phenols from coal tar and waste water by precipitation. Journal of China Coal Society (5), 545–550 (in Chinese).
|
Holkar, C.R., Pandit, A.B., Pinjari, D.V., 2014. Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp. F NCIM 5545. Bioresour. Technol. 173, 342–351. https://doi.org/10.1016/j.biortech.2014.09.108.
|
Huma, H., Qaisar, M., Arshid, P., Zulfiqar, A.B., Shams, A.B., 2015. Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Sep. Purif. Technol. 154, 149–153. https://doi.org/10.1016/j.seppur.2015.09.025.
|
Kim, K.H., Ihm, S.K., 2011. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. J. Hazard. Mater. 186, 16–34. https://doi.org/10.1016/j.jhazmat.2010.11.011.
|
Lemlikchi, W., Sharrock, P., Fiallo, M., Nzihouc, A., Mecherria, M.O., 2014. Hydroxyapatite and Alizarin sulfonate ARS modeling interactions for textile dyes removal from wastewaters. Procedia Eng. 83, 378–385. https://doi.org/10.1016/j.proeng.2014.09.032.
|
Li, H.Y., Liu, S.Y., Zhao, J.H., Feng, N., 2016. Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 494, 222–227. https://doi.org/10.1016/j.colsurfa.2016.01.048.
|
Li, M.L., Zhou, Y.S., Ji, S., 2010. Preparation and microstructure of silver nanopowder with spheric morphology. Ordnance Mater. Sci. Eng. 33, 1–3 (in Chinese).
|
Li, T., Ma, G.H., Peng, T.J., 2015. Mechanism of preparing spherical nano-sized silver particles via o-phenylenediamine reduction process in water-NMPD mixed solution system. Rare Metal Mater. Eng. 44(5), 1071–1074. https://doi.org/10.1016/S1875-5372(15)30069-2.
|
Liang, C.Z., Sun, S.P., Li, F.Y., Ong, Y.K., Chung, T.S., 2014. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J. Membr. Sci. 469, 306–315. https://doi.org/10.1016/j.memsci.2014.06.057.
|
Marletta, A., Nascimento, N.D., Eiras, S.P., Andrade, A.A., Pilla, V.P., Cruz, W.O., 2017. Synthesis optimization of guest/host poly (styrene sulphonate) doped neodymium(III) films. J. Non-Crystalline Solids 456, 1–6. https://doi.org/10.1016/j.jnoncrysol.2016.10.034.
|
Misra, D.N., 1992. Reaction of alizarin red S with hydroxyapatite: Stoichiometry and surface effect. Colloids Surf. 66(3), 181–187. https://doi.org/10.1016/0166-6622(92)80191-4.
|
Moriguchi, T., Yano, K., Nakagawa, S., Kaji, F., 2003. Elucidation of adsorption mechanism of bone-staining agent alizarin red S on hydroxyapatite by FT-IR microspectroscopy. J. Colloid Interface Sci. 260(1), 19–25. https://doi.org/10.1016/S0021-9797(02)00157-1.
|
Paz, A., Carballo, J., Perez, M.J., Domínguez, J.M., 2017. Biological treatment of model dyes and textile wastewaters. Chemosphere 181, 168–177. https://doi.org/10.1016/j.chemosphere.2017.04.046.
|
Rosenkranz, F., Cabrol, L., Carballa, M., 2013. Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR. Wat. Res. 47(17), 6739–6749. https://doi.org/10.1016/j.watres.2013.09.004.
|
Song, H.Y., You, J.A., Chen, C.X., Zhang, H., Ji, X.Z., Li, C.Y., Yang, Y., Xu, N.D., Huang, J., 2016a. Manganese functionalized mesoporous molecular sieves Ti-HMS as a Fenton-like catalyst for dyes wastewater purification by advanced oxidation processes. J. Environ. Chem. Eng. 4(4), 4653–4660. https://doi.org/10.1016/j.jece.2016.09.039.
|
Song, Y.F., Chen, X.Y., Zhao, Z.W., Zhang, J.L., He, L.H., 2016b. Theoretical basis for the separation of W and Mo with manganese dioxide: A speciation-based approach. Metall. Mater. Trans. B 47(1), 675–685. https://doi.org/10.1007/s11663-015-0516-6.
|
Srinivasan, A., Viraraghavan, T., 2010. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manage. 91(10), 1915–1929. https://doi.org/10.1016/j.jenvman.2010.05.003.
|
State Environmental Protection Administration of China (SEPAC), 2002. Analytical and Monitoring Methods of Water and Wastewater, fourth ed. China Environmental Science Press, Beijing (in Chinese).
|
Tan, F., Liu, M., Li, K., Wang, Y., Wang, J., Guo, X.W., Zhang, G.L., Song, C.S., 2015. Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue. J. Chem. Eng. 281, 360–367. https://doi.org/10.1016/j.cej.2015.06.044.
|
Tehrani-Bagha, A.R., Singh, R.G., Holmberg, K., 2013. Solubilization of two organic dyes by anionic, cationic and nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 417, 133–139. https://doi.org/10.1016/j.colsurfa.2012.10.006.
|
Uygur, A., Kök, E., 1999. Decolorisation treatments of azo dye waste waters including dichlorotriazinyl reactive groups by using advanced oxidation method. Color. Technol. 115(11), 350–354. https://doi.org/10.1111/j.1478-4408.1999.tb00325.x.
|
Wang, G.X., Hu, L.N., He, Y.J., 2015. Study on morphology and size distribution controlling of BaSO4 particles by PAAS. Inorg. Chem. Ind. 47, 35–38 (in Chinese).
|
Watanabe, K., Oshio, N., Kawakami, T., Kimura, T., 2004. Isomerization reactions with sulfur-containing pentane over Metal/SO42−/ZrO2 catalysts. Appl. Catal. A: General 272(1–2), 281–287. https://doi.org/10.1016/j.apcata.2004.05.052.
|
Weng, S.F., Xu, Y.Z., 2016. Fourier Transform Infrared Spectrometry, third ed. Chemical Industry Press, Beijing (in Chinese).
|
Zangeneh, H., Zinatizadeh, A.A.L., Habibi, M. Akia, M., 2015. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 26, 1–36. https://doi.org/10.1016/j.jiec.2014.10.043.
|
Zhang, D.A.,1994. Determination of the color in wastewater using spectrophotometry. Chinese Journal of Preventive Medicine 28, 370–371 (in Chinese).
|
Zhu, M.X., Lee, L., Wang, H.H., Wang, Z., 2007. Removal of an anionic dye by adsorption/ precipitation processes using alkaline white mud. J. Hazard. Mater. 149(3), 735–741. https://doi.org/10.1016/j.jhazmat.2007.04.037.
|