Volume 12 Issue 1
Mar.  2019
Turn off MathJax
Article Contents
Rodney Ronalds, Alex Rowlands, Hong Zhang. 2019: On-site stormwater detention for Australian development projects: Does it meet frequent flow management objectives?. Water Science and Engineering, 12(1): 1-10. doi: 10.1016/j.wse.2019.03.004
Citation: Rodney Ronalds, Alex Rowlands, Hong Zhang. 2019: On-site stormwater detention for Australian development projects: Does it meet frequent flow management objectives?. Water Science and Engineering, 12(1): 1-10. doi: 10.1016/j.wse.2019.03.004

On-site stormwater detention for Australian development projects: Does it meet frequent flow management objectives?

doi: 10.1016/j.wse.2019.03.004
More Information
  • Corresponding author: Rodney Ronalds
  • Received Date: 2018-06-21
  • Rev Recd Date: 2018-12-24
  • On-site stormwater detention (OSD) is a conventional component of urban drainage systems, designed with the intention of mitigating the increase to peak discharge of stormwater runoff that inevitably results from urbanization. In Australia, singular temporal patterns for design storms have governed the inputs of hydrograph generation and in turn the design process of OSD for the last three decades. This paper raises the concern that many existing OSD systems designed using the singular temporal pattern for design storms may not be achieving their stated objectives when they are assessed against a variety of alternative temporal patterns. The performance of twenty real OSD systems was investigated using two methods: (1) ensembles of design temporal patterns prescribed in the latest version of Australian Rainfall and Runoff, and (2) real recorded rainfall data taken from pluviograph stations modeled with continuous simulation. It is shown conclusively that the use of singular temporal patterns is ineffective in providing assurance that an OSD will mitigate the increase to peak discharge for all possible storm events. Ensemble analysis is shown to provide improved results. However, it also falls short of providing any guarantee in the face of naturally occurring rainfall.

     

  • loading
  • Aitken, A.P., 1975. Hydrologic Investigation and Design of Urban Stormwater Drainage Systems, Australian Water Resources Council Technical Paper No. 10. Australian Government Publishing Service, Canberra.
    Badini, A., 2018. PCdrain (Version 11) User Manual. Badini Software, Brisbane.
    Ball, J.E., Babister, M.K., Nathan, R., Weinmann, P.E., Weeks, W., Retallick, M., Testoni, I., eds., 2016. Australian Rainfall and Runoff: A Guide to Flood Estimation. Commonwealth of Australia, Sydney.
    Bellu, A., Fernandes, L.F.S., Cortes, R.M., Pacheco, F.A., 2016. A framework model for the dimensioning and allocation of a detention basin system: The case of a flood-prone mountainous watershed. Journal of Hydrology, 533, 567-580. https://doi.org/10.1016/j.jhydrol.2015.12.043.
    Bennett, M.S., Mays, L.W., 1985. Optimal design of detention and drainage channel systems. Journal of Water Resources Planning and Management, 111(1), 99-112. https://doi.org/10.1061/(ASCE)0733-9496(1985)111:1(99).
    Bledsoe, B.P., 2002. Stream erosion potential and stormwater management strategies. Journal of Water Resources Planning and Management, 128(6), 451-455. https://doi.org/10.1061/(ASCE)0733-9496(2002)128:6(451) .
    Booth, D.B., Jackson, C.R., 1997. Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation. Journal of the American Water Resources Association, 33(5), 1077-1090. https://doi.org/10.1111/j.1752-1688.1997.tb04126.x.
    Boyd, M., Bufill, M., Knee, R., 1993. Pervious and impervious runoff in urban catchments. Hydrological Science Journal, 38(6), 463-478. https://doi.org/10.1080/02626669309492699.
    Boyd, M., Rigby, T., VanDrie, R., 1996. A comprehensive flood model for natural and urban catchments. In: Proceedings of the International Conference of Urban Storm Drainage (Vol. 2). SuG-Verlagsgesellschaft, pp. 329-334.
    Boyd, M., Rigby, T., VanDrie, R., 2012. WBNM 2012 User Manual. University of Wollongong, Wollongong.
    Brown, G.O., 2002. Henry Darcy and the making of a law. Water Resources Research, 38(7), 1-12. https://doi.org/10.1029/2001WR000727.
    Caballero, W.L., Rahman, A., 2014a. Application of Monte Carlo simulation technique for flood estimation for two catchments in New South Wales, Australia. Natural Hazards, 74(3), 1475-1488. https://doi.org/10.1007/s11069-014-1251-z.
    Caballero, W.L., Rahman, A., 2014b. Development of regionalized joint probability approach to flood estimation: A case study for Eastern New South Wales, Australia. Hydrological Processes, 28(13), 4001-4010. https://doi.org/10.1002/hyp.9919.
    City of Gold Coast (CGC), 2018. City Plan Version 6, Land Development Guidelines. Government Publishing Service, Brisbane.
    Cunge, J.A., 1969. On the subject of a flood propagation computation method (Musklngum method). Journal of Hydraulic Research, 7(2), 205-230. https://doi.org/10.1080/00221686909500264.
    Department of Natural Resources, Mines and Energy, Queensland Government (DNRMEQG), 2018. “Standalone Pluviograph (Rainfall) Data” Section on Water Monitoring Information Portal. https://water-monitoring.information.qld.gov.au/ [Retrieved April 2, 2018].
    Duan, H.F., Li, F., Yan, H., 2016. Multi-objective optimal design of detention tanks in the urban stormwater drainage system: LID implementation and analysis. Water Resources Management, 30(13), 4635-4648. https://doi.org/10.1007/s11269-016-1444-1.
    Ferguson, B.K., Deak, T., 1994. Role of urban storm-flow volume in local drainage problems. Journal of Water Resources Planning and Management, 120(4), 523-530. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(523).
    Hatt, B.E., Fletcher, T.D., Walsh, C.J., Taylor, S.L., 2004. The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environmental Management, 34(1), 112-124. https://doi.org/10.1007/s00267-004-0221-8.
    Hawley, R.J., Goodrich, J.A., Korth, N.L., Rust, C.J., Fet, E.V., Frye, C., MacMannis, K.R., Wooten, M.S., Jacobs, M., Sinha, R., 2017. Detention outlet retrofit improves the functionality of existing detention basins by reducing erosive flows in receiving channels. Journal of the American Water Resources Association, 53(5), 1032-1047. https://doi.org/10.1111/1752-1688.12548.
    Hill, P., Thompson, R., 2016. Chapter 3: Losses. In: Ball, J.E., Babister, M.K., Nathan, R., Weinmann, P.E., Weeks, W., Retallick, M., Testoni, I., eds., Australian Rainfall and Runoff: A Guide to Flood Estimation, Book 5. Commonwealth of Australia, Sydney.
    Horner, R., May, C., Livingston, E., Maxted, J., 1999. Impervious cover, aquatic community health, and stormwater BMPs: Is there a relationship? In: Proceedings of the Sixth Biennial Stormwater Research Conference, Tampa, Florida.
    Institute of Public Works Engineering Australia (IPWEA), 2017. Queensland Urban Drainage Manual, fourth ed. Queensland Government Publishing Service, Brisbane.
    Kaini, P., Artita, K., Nicklow, J.W., 2007. Evaluating optimal detention pond locations at a watershed scale. In: World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat. American Society of Civil Engineers. https://doi.org/10.1061/40927(243)170.
    Kuczera, G., Kavetski, D., Franks, S., Thyer, M., 2006. Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters. Journal of Hydrology, 331(1-2), 161-177. https://doi.org/10.1016/j.jhydrol.2006.05.010.
    Laurenson, E., Mein, R., Nathan, R., 2010. RORB Version 6 Runoff Routing Program User Manual. Monash University and Sinclair Knight Merz Pty. Ltd., Melbourne.
    Loveridge, M., Rahman, A., 2014. Quantifying uncertainty in rainfall-runoff models due to design losses using Monte Carlo simulation: A case study in New South Wales, Australia. Stochastic Environmental Research and Risk Assessment, 28(8), 2149-2159. https://doi.org/10.1007/s00477-014-0862-y.
    Loveridge, M., Babister, M., Retallick, M., 2015a. Australian Rainfall and Runoff Revision Project 3: Temporal Patterns of Rainfall. Engineers Australia, Barton.
    Loveridge, M., Babister, M., Retallick, M., Testoni, I., 2015b. Testing the suitability of rainfall temporal pattern ensembles for design flood estimation. In: Proceedings of 36th Hydrology and Water Resources Symposium: The Art and Science of Water. Engineers Australia, Barton, p. 132.
    McCuen, R.H., 1974. A regional approach to urban storm water detention. Geophysical Research Letters, 1(7), 321-322. https://doi.org/10.1029/GL001i007p00321.
    McCuen, R.H., Moglen, G., 1988. Multicriterion stormwater management methods. Journal of Water Resources Planning and Management, 114(4), 414-431. https://doi.org/10.1061/(ASCE)0733-9496(1988)114:4(414).
    Müller, H., Haberlandt, U., 2018. Temporal rainfall disaggregation using a multiplicative cascade model for spatial application in urban hydrology. Journal of Hydrology, 556, 847-864. https://doi.org/10.1016/j.jhydrol.2016.01.031.
    Nathan, R., Weinmann, E., Hill, P., 2003. Use of Monte Carlo simulation to estimate the expected probability of large to extreme floods. In: Boyd, M.J., Ball, J.E., Babister, M.K., Green, J., eds., Proceedings of the 28th International Hydrology and Water Resources Symposium: About Water. Institution of Engineers, Australia, Barton, p. 1.
    Nathan, R., Ling, F., 2016. Chapter 3: Catchment Simulation. In: Ball, J.E., Babister, M.K., Nathan, R., Weinmann, P.E., Weeks, W., Retallick, M., Testoni, I., eds., Australian Rainfall and Runoff: A Guide to Flood Estimation, Book 4. Commonwealth of Australia, Sydney.  
    O'Loughlin, G., Beecham, S., Lees, S., Rose, L., Nicholas, D., 1995. On-site stormwater detention systems in Sydney. Water Science and Technology, 32(1), 169-175. https://doi.org/10.1016/0273-1223(95)00552-X.
    O’Loughlin, G., Stack, B., 2014. DRAINS User Manual. Watercom Pty Ltd., Sydney.
    Phillips, B., Van Der Sterren, M., Argue, J., 2016. Chapter 4: Stormwater volume management. In: Ball, J.E., Babister, M.K., Nathan, R., Weinmann, P.E., Weeks, W., Retallick, M., Testoni, I., eds., Australian Rainfall and Runoff: A Guide to Flood Estimation, Book 9. Commonwealth of Australia, Sydney.
    Phillips, D.I., 1987. On-site stormwater detention for small urban redevelopment projects. In: Proceedings of the 4th International Conference on Urban Storm Drainage. IAHR and IAWPRC, Lausanne, pp. 142-147.
    Phillips, D.I., 1995. A generic method of design of on-site stormwater detention storages. Water Science and Technology, 32(1), 93-99. https://doi.org/10.1016/0273-1223(95)00543-V.
    Pilgrim, D.H., Cordery, I., 1975. Rainfall temporal patterns for design floods. Journal of the Hydraulics Division, 101(1), 81-95.
    Pilgrim, D.H., Canterford, R.P., 1987. Australian Rainfall and Runoff: A Guide to Flood Estimation, third ed. Institution of Engineers, Australia, Barton.
    Poertner, H.G., 1976. Urban stormwater detention and flow attenuation for water pollution control. In: Proceedings of Urban Stormwater Management Seminars.
    Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E., Stromberg, J.C., 1997. The natural flow regime. BioScience, 47(11), 769-784. https://doi.org/10.2307/1313099.
    Rahman, A., Weinmann, P.E., Hoang, T.M.T., Laurenson, E.M., 2002. Monte Carlo simulation of flood frequency curves from rainfall. Journal of Hydrology, 256(3-4), 196-210. https://doi.org/10.1016/S0022-1694(01)00533-9.
    Ravazzani, G., Gianoli, P., Meucci, S., Mancini, M., 2014. Assessing downstream impacts of detention basins in urbanized river basins using a distributed hydrological model. Water Resources Management, 28(4), 1033-1044. https://doi.org/10.1007/s11269-014-0532-3.
    Ronalds, R., Rowlands, A., Zhang, H., 2017. The performance of on-site stormwater detention systems in response to recent advances in hydrologic theory. In: Proceedings of the 13th Hydraulics in Water Engineering Conference, Engineers Australia, p. 354.
    Ronalds, R., Zhang, H., 2017. An alternative method for on-site stormwater detention design. Journal of Hydrology (New Zealand), 56(2), 137-153.
    Saunders, W.L., Jr., 2006. Detention Basin Design to Mitigate Regional Peak Flow Impacts. Ph. D. Dissertation. North Carolina State University, Raleigh.
    Shuster, W., Rhea, L., 2013. Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA). Journal of Hydrology, 485, 177-187. https://doi.org/10.1016/j.jhydrol.2012.10.043.
    Shuster, W.D., Bonta, J., Thurston, H., Warnemuende, E., Smith, D.R., 2005. Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2(4), 263-275. https://doi.org/10.1080/15730620500386529.
    Su, D., Fang, X., Fang, Z., 2010. Effectiveness and downstream impacts of stormwater detention ponds required for land development. In: Proceedings of World Environmental and Water Resources Congress 2010: Challenges of Change, pp. 3071-3081. https://doi.org/10.1061/41114(371)314.
    Tao, T., Wang, J., Xin, K., Li, S., 2014. Multi-objective optimal layout of distributed storm-water detention. International Journal of Environmental Science and Technology, 11(5), 1473-1480. https://doi.org/10.1007/s13762-013-0330-0.
    Taylor, A., 2005. Structural stormwater quality BMP cost/size relationship information from the literature. Cooperative Research Centre for Catchment Hydrology, Melbourne, pp. 53-64.
    Travis, Q.B., Mays, L.W., 2008. Optimizing retention basin networks. Journal of Water Resources Planning and Management, 134(5), 432-439. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:5(432).
    Vietz, G.J., Hawley, R.J., 2019. Protecting and managing stream morphology in urban catchments using WSUD. In: Approaches to Water Sensitive Urban Design. Woodhead Publishing, pp. 249-267. https://doi.org/10.1016/B978-0-12-812843-5.00012-5.
    Walsh, C.J., Roy, A.H., Feminella, J.W., Cottingham, P.D., Groffman, P.M., Morgan, R.P., 2005. The urban stream syndrome: Current knowledge and the search for a cure. Journal of the North American Benthological Society, 24(3), 706-723. https://doi.org/10.1899/04-028.1.
    Walsh, C.J., Fletcher, T.D., Vietz, G.J., 2016. Variability in stream ecosystem response to urbanization: Unraveling the influences of physiography and urban land and water management. Progress in Physical Geography, 40(5), 714-731. https://doi.org/10.1177/0309133316671626.
    Woldemeskel, F.M., Sharma, A., Mehrotra, R., Westra, S., 2016. Constraining continuous rainfall simulations for derived design flood estimation. Journal of Hydrology, 542, 581-588. https://doi.org/10.1016/j.jhydrol.2016.09.028.
    Wood, E.F., 1976. An analysis of the effects of parameter uncertainty in deterministic hydrologic models. Water Resources Research, 12(5), 925-932. https://doi.org/10.1029/WR012i005p00925.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (530) PDF downloads(475) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return