Citation: | Dominic E. Reeve, Ali Adel Zuhaira, Harshinie Karunarathna. 2019: Computational investigation of hydraulic performance variation with geometry in gabion stepped spillways. Water Science and Engineering, 12(1): 62-72. doi: 10.1016/j.wse.2019.04.002 |
André, S., 2004. High Velocity Aerated Flows on Stepped-chutes with Macro-roughness Elements, Communication 20. Laboratorie de Constructions Hydrauliques Ecole Polytechnique Federale de Lausanne, Lausanne.
|
André, S., Schleiss, A., 2004. High velocity aerated flows on stepped chutes with macro-roughness elements. École Polytechnique Fédérale de Lausanne, Lausanne. https://doi.org/10.5075/epfl-thesis-2993.
|
Boes, R.M., Hager, W.H., 2003. Hydraulic design of stepped spillways. Journal of Hydraulic Engineering, 129(9), 671-679. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:9(671).
|
Carosi, G., Chanson, H., 2008. Turbulence characteristics in skimming flows on stepped spillways. Canadian Journal of Civil Engineering, 35(9), 865-880. https://doi.org/10.1139/L08-030.
|
Chanson, H., 1994. Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research, 32(3), 445–460. https://doi.org/10.1080/00221689409498745.
|
Chanson, H., 1995. Air Bubble Entrainment in Free-surface Turbulent Flows: Experimental Investigations, Report CH46/95. University of Queensland, Queensland.
|
Chanson, H., 1996. Prediction of the transition nappe/skimming flow on a stepped channel. Journal of Hydraulic Research, 34(3), 421-429. https://doi.org/10.1080/00221689609498490.
|
Chanson, H., 2002. The Hydraulics of Stepped Chutes and Spillways. A. A. Balkema Publishers, Lisse.
|
Chinnarasri, C., Donjadee, S., Israngkura, U., 2008. Hydraulic characteristics of gabion-stepped weirs. Journal of Hydraulic Engineering, 134, 1147–1152. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:8(1147).
|
Freeman, G.E., Fischenich, J.C., 2000. Gabions for Streambank Erosion Control, EMRRP Technical Notes Collection (ERDC TN-EMRRP SR-22). U.S. Army Engineering Research and Development Center, Vicksburg.
|
Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.
|
Hunt, S.L., Kadavy, K.C., 2011. Inception point relationship for flat-slopped stepped spillways. Journal of Hydraulic Engineering, 137(2), 262–266. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000297.
|
Hunt, S.L., Kadavy, K.C., 2013. Inception point for embankment dam stepped spillway. Journal of Hydraulic Engineering, 139(1), 60–64. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000644.
|
Husain, S.M., 2013. Computational Investigation of Skimming Flow on Stepped Spillways Using the Smoothed Particle Hydrodynamics Method. Ph. D. Dissertation. Swansea University, Swansea.
|
Husain, S.M., Muhammed, J.R., Karunarathna, H.U., Reeve, D.E., 2013. Investigation of pressure variation over stepped spillways using smooth particle hydrodynamics. Advances in Water Resources, 66, 52–69. https://doi.org/10.1016/j.advwatres.2013.11.013.
|
Kells, J.A., 1994. Energy dissipation at a gabion weir with throughflow and overflow. In: Proceedings of Annual Conference of the Canadian Society of Civil Engineering. pp. 1–4.
|
Kothe, D.B., Mjolsness, R.C., Torrey, M.D., 1991. RIPPLE: A Computer Program for Incompressible Flows with Free Surface., Rep. LA-12007-MS. Los Alamos National Laboratory, Los Alamos.
|
Lin, P., Xu, W., 2006. NEWFLUME: A numerical water flume for two two-dimensional turbulent free surface flow. Journal of Hydraulic Research, 44(1), 60–64. https://doi.org/10.1080/00221686.2006.9521663.
|
Manes, C., Pokrajac, D., McEwan, I., Nikora, V., 2009. Turbulence structure of open channel flows over permeable and impermeable beds: A comparative study. Physics of Fluids, 21(12), 125109. https://doi.org/10.1063/1.3276292.
|
Meireles, I., Matos, J., 2009. Skimming flow in the non-aerated region of stepped spillways over embankment dams. Journal of Hydraulic Engineering, 135(8), 685–689. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000047.
|
Novak, P., Mofatt, A.I.B., Nalluri, C., Narayanan, R., 2001. Hydraulic Structures, fourth ed. Taylor and Francis, London and New York.
|
Novak, P., Guinot, V., Jeffrey, A., Reeve, D.E., 2010. Hydraulic Modelling: An Introduction. Spon Press, Abingdon.
|
Peyras, L., Royet, P., Degoutte, G., 1992. Flow and energy dissipation over stepped gabion weirs. Journal of Hydraulic Engineering, 118(5), 707–717. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:5(707).
|
Salmasi, F., Chamani, M.R., Zadeh, D.F., 2012. Stepped gabion spillways with low heights. IJST: Transactions of Civil Engineering, 36(2), 253–264. https://doi.org/10.22099/ijstc.2012.640.
|
Schlichting, H., 1979. Boundary Layer Theory. McGraw-Hil, New York.
|
Stephenson, D., 1979. Gabion energy dissipators. In: Proceedings of 13th International Congress on Large Dams. International Commission on Large Dams, pp. 33–43.
|
Wentworth, C., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5), 377–392.
|
Wüthrich, D., Chanson, H., 2014. Hydraulics, air entrainment, and energy dissipation on a gabion stepped weir. Journal of Hydraulic Engineering, 140(9), 04014046. https://doi.org/10.1061/(asce)hy.1943-7900.0000919.
|
Zhang, G., Chanson, H., 2014. Two-phase flow on a gabion stepped spillway: Cavity and seepage air-water motion. In: Proceedings of the 19th Australasian Fluid Mechanics Conference. Australasian Fluid Society.
|
Zhang, G., Chanson, H., 2016a. Gabion stepped spillway: Interactions between free-surface, cavity and seepage flows. Journal of Hydraulic Engineering, 142(5). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001120.
|
Zhang, G., Chanson, H., 2016b. Hydraulics of the developing flow region of stepped spillways, Part I: Physical modelling and boundary layer development. Journal of Hydraulic Engineering, 142(7). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001138.
|
Zuhaira, A.A., Karunarathna, H.U., Reeve, D.E., 2017. Numerical investigation of step dimensions impact over gabion stepped spillways. In: Proceedings of the 37th IAHR World Congress. International Association for Hydro-Environment Engineering and Research.
|