Volume 12 Issue 1
Mar.  2019
Turn off MathJax
Article Contents
Shweta Gupta, S. K. Sharma, Arinjay Kumar. 2019: Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder. Water Science and Engineering, 12(1): 27-36. doi: 10.1016/j.wse.2019.04.003
Citation: Shweta Gupta, S. K. Sharma, Arinjay Kumar. 2019: Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder. Water Science and Engineering, 12(1): 27-36. doi: 10.1016/j.wse.2019.04.003

Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder

doi: 10.1016/j.wse.2019.04.003
Funds:  This work was supported by the Guru Gobind Singh Indraprastha University of India (Grant No. GGSIPU/DRC/Ph.D./Adm./IPRF/2015/157).
More Information
  • Corresponding author: Arinjay Kumar
  • Received Date: 2018-05-31
  • Rev Recd Date: 2018-12-11
  • This study aimed to investigate the biosorption potential of Na2CO3-modified Aloe barbadensis Miller (Aloe vera) leaf (MABL) powder for removal of Ni(II) ions from a synthetic aqueous solution. Effects of various process parameters (pH, equilibrium time, and temperature) were investigated in order to optimize the biosorptive removal. The maximum biosorption capacity of MABL was observed to be 28.986 mg/g at a temperature of 303 K, a biosorbent dose of 0.6 g, a contact time of 90 min, and a pH value of 7. Different kinetic models (the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models) were evaluated. The pseudo-second-order kinetic model was found to be the best fitted model in this study, with a coefficient of determination of R2 = 0.974. Five different isotherm models (the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Brunauer-Emmett-Teller (BET) models) were investigated to identify the best-suited isotherm model for the present system. Based on the minimum chi-square value (χ2 = 0.027) and the maximum coefficient of determination (R2 = 0.996), the Langmuir isotherm model was found to represent the system well, indicating the possibility of monolayer biosorption. The sticking probability (S*) was found to be 0.41, suggesting a physisorption mechanism for biosorption of Ni(II) on MABL. The biosorbent was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, and BET surface area, in order to understand its morphological and functional characteristics.

     

  • loading
  • Abadian, S., Rahbar-Kelishami, A., Norouzbeigi, R., Peydayesh, M., 2014. Cu(II) adsorption onto Platanus orientalis leaf powder: Kinetic, isotherm, and thermodynamic studies. Research on Chemical Intermediates 41(10), 7669–7681.
    Abdulrasaq, O.O., Basiru, O.G., 2010. Removal of copper(II), iron(III) and lead(II) ions from mono-component simulated waste effluent by adsorption on coconut husk. African Journal of Environmental Science and Technology 4(6), 382–387. https://doi.org/10.5897/AJEST09.224.
    Abedi, S., Zavvar Mousavi, H., Asghari, A., 2016. Investigation of heavy metal ions adsorption by magnetically modified Aloe vera leaves ash based on equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment 57(29), 13747–13759. https://doi.org/10.1080/19443994.2015.1060536.
    Aharoni, C., Ungarish, M., 1976. Kinetics of activated chemisorption, Part 1: The non-elovich part of the isotherm. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 72, 400–408. https://doi.org/10.1039/F19767200400.
    Alia, R.M., Hamada, H.A., Husseinb, M.M., Gihan, F.M.F., 2016. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecological Engineering 91, 317–332. https://doi.org/10.1016/j.ecoleng.2016.03.015.
    Alomá, I., Mart?n-Lara, M.A., Rodr?guez, I.L., Blázquez, G., Calero, M., 2012. Removal of nickel(II) ions from aqueous solutions by biosorption on sugarcane bagasse. Journal of the Taiwan Institute of Chemical Engineers 43(2), 275–281. https://doi.org/10.1016/j.jtice.2011.10.011.
    Alyüz, B., Veli, S., 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials 167(1–3), 482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006.
    Anoop Krishnan, K., Sreejalekshmi, K.G., Baiju, R.S., 2011. Nickel(II) adsorption onto biomass-based activated carbon obtained from sugarcane bagasse pith. Bioresource Technology 102(22), 10239–10247. https://doi.org/10.1016/j.biortech.2011.08.069.
    Argun, M.E., Dursun, S., Ozdemir, C., Karatas, M., 2007. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. Journal of Hazardous Materials 141(1), 77–85. https://doi.org/10.1016/j.jhazmat.2006.06.095.
    Babel, S., Kurniawan, T.A., 2004. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54(7), 951–967. https://doi.org/10.1016/j.chemosphere.2003.10.001.
    Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multi molecular layers. Journal of the American Chemical Society. 60(2), 309–319. https://doi.org/10.1021/ja01269a023.
    Bulut, Y., Tez, Z., 2003. Removal of heavy metal ions by modified sawdust of walnut. Fresenius Environmental Bulletin 12(12), 1499–1504. https://doi.org/10.1016/S1001-0742(07)60026-6.
    Chen, H., Dai, G.L., Zhao, J., Zhong, A.G., Wu, J.Y., Yan, H., 2010. Removal of copper(II) ions by a biosorbent Cinnamomum camphora leaves powder. Journal of Hazardous Materials 177(1–3), 228–236. https://doi.org/10.1016/j.jhazmat.2009.12.022.
    Das, B., Mondal, N.K., Roy, P., Soumya, C., 2013. Equilibrium, kinetics and thermodynamics study on chromium(VI) removal from aqueous solution using Pistia stratiotes biomass. Chemical Science Transaction 2(1), 85–104. https://doi.org/10.7598/cst2013.318.
    Demirbas, Ö., Karada?, A., Alkan, M., Do?an, M., 2008. Removal of copper ions from aqueous solutions by hazelnut shell. J. Hazard. Mater. 153(1–2), 677–684. https://doi.org/10.1016/j.jhazmat.2007.09.012.
    Ding, T.Y., Hii, S.L., Ong, L., 2012. Comparison of pretreatment strategies for conversion of coconut husk fiber to fermentable sugars. Bioresource 7(2), 1540–1547. https://doi.org/10.15376/biores.7.2.1540-1547.
    Dubinin, M.M., 1960. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews 60(2), 235–241. https://doi.org/10.1021/cr60204a006.
    Duffus, J.H., 2002. "Heavy metals" a meaningless term (IUPAC technical report). Pure and Applied Chemistry 74(5), 793–807. https://doi.org/10.1351/pac200274050793.
    Freundlich, H., 1926. Colloid and Capillary Chemistry. Methuen, London.
    Giannakoudakis, D.A., Hosseini-Bandegharaei, A., Tsafrakidou, P., Triantafyllidis, K.S., Kornaros, M., Anastopoulosd, I., 2018. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review. Journal of Environmental Management 227, 354–364. https://doi.org/10.1016/j.jenvman.2018.08.064.
    Guo, H., Zhang, S.F., Kou, Z.N., Zhai, S.R, Ma, W., Yang, Y., Huang, Y., 2015. Separation of Cd(II) and Ni(II) in a binary mixture through competitive adsorption and acid leaching. RSC Advances (5), 92885–92892. https://doi.org/10.1039/c5ra13789f.
    Gupta, S., Jain, A.K., 2017a. Biosorption of heavy metals by pretreated  biomass of A. barbadensis Miller leaves residue powder. International Journal of Advance Research in Science and Engineering 6(8), 677–683.
    Gupta, S., Jain, A.K., 2017b. Bioadsorption behavior & thermodynamic study of Cadmium(II) on A. barbadensis Miller leaves residue powder. International Journal Applied Science and Engineering Technology 5(8), 1219–1225.
    Hansch, R., Mendel, R.R., 2009. Physiology functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology 12(3), 259–266. https://doi.org/10.1016/j.pbi.2009.05.006.
    He, J.S., Chen, J.P., 2014. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modelling simulation tools. Bioresource Technology 160, 67–78. https://doi.org/10.1016/j.biortech.2014.01.068.
    Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34(5), 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.
    Horsfall Jnr, M., Spiff, A.I., 2005. Effect of 2-mercapto ethanoic acid treatment of fluted pumpkin waste (Telfairiaoccidentalis Hook. f.) on the sorption of Ni2+  ions from aqueous solution. Journal of Scientific & Industrial Research 64(8), 613–620.
    Ibrahim, M.B., Sani, S., 2015. Neem (Azadirachta indica) leaves for removal of organic pollutants. Journal of Geoscience and Environment Protection 3, 1–9. https://doi.org/10.4236/gep.2015.32001.
    Johnson, P.D., Watsona, M.A., Browna, J., Jefcoat, I.A., 2002. Peanut hull pellets as a single use sorbent for the capture of Cu(II) from wastewater. Waste Management 22(5), 471–480. https://doi.org/10.1016/S0956-053X(01)00036-8.
    Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C., 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology 76(1), 63–65. https://doi.org/10.1016/S0960-8524(00)00072-9.
    Kandah, M.I., Meunier, J.L., 2007. Removal of nickel ions from water by multi-walled carbon nanotubes. Journal of Hazardous Materials 146(1–2), 283–288. https://doi.org/10.1016/j.jhazmat.2006.12.019.
    Karami, H., 2013. Heavy metal removal from water by magnetite nanorods. Chemical Engineering Journal 219(1), 209–216. https://doi.org/10.1016/j.cej.2013.01.022.
    Khandegar, V., Saroha, A.K., 2014. Treatment of distillery spentwash by electrocoagulation. Journal of Clean Energy Technology 2(3), 244–247. https://doi.org/10.7763/JOCET.2014.V2.133.
    Kiran, P., Rao, P.S., 2014. Rheological and structural characterization of prepared aqueous Aloe vera dispersions. Food Research International 62, 1029–1037. https://doi.org/10.1016/j.foodres.2014.05.033.
    Ku, Y., Jung, I.L., 2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Research, 35(1), 135–142. https://doi.org/10.1016/S0043-1354(00)00098-1.
    Lagergren, S., Svenska, B.K., 1898. Zurtheorie der sogenannten adsorption geloesterstoffe. Veternskapsakad Handlingar 24, 1–9.
    Landaburu-Aguirre, J., García, V., Pongrácz, E., Keiski, R.L., 2009. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: Statistical design of experiments. Desalination 240(1–3), 262–269. https://doi.org/10.1016/j.desal.2007.11.077.
    Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica andplatinum. Journal of American Chemical Society 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004.
    Levent, G., Ilknur, S., Tolga, B., Hanife, B., 2010. Treatment of nickel plating industrial wastewater by fungus immobilized onto rice bran. Journal of Microbial & Biochemical Technology 2, 34–37. https://doi.org/10.4172/1948-5948.1000020.
    Li, Z.M., Tjoon, T.T., Alkarkhi, A.F.M., Rafatullah, M., Ling, W.L., 2013. Chemical modification of Imperata cylindrica leaf powder for heavy metal ion adsorption. Water, Air, & Soil Pollution 224, 1505. https://doi.org/10.1007/s11270-013-1505-5.
    Lim, L.B.L., Priyantha, N., Tennakoon, D.T.B., Chieng, H.I., Dahri, M.K., Suklueng, M., 2014. Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry 10(S2), S3216–S3228. https://doi.org/10.1016/j.arabjc.2013.12.018.
    López-Maldonado, E.A., Oropeza-Guzman, M.T., Jurado-Baizaval, J.L. Ochoa-Terán, A., 2014. Coagulation-flocculation mechanisms in wastewater treatment plants through zeta potent measurements. Journal of Hazardous Materials 279, 1–10. https://doi.org/10.1016/j.jhazmat.2014.06.025.
    Ministry of Environment and Forests, 2012. Environmental Standards for Electroplating, Anodizing Industry. Ministry of Environment and Forest, Delhi.
    Mohanty, K., Das, D., Biswas, M.N., 2005. Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chemical Engineering Journal 115(1–2), 121–131. https://doi.org/10.1016/j.cej.2005.09.016.
    Moosa, A.A., Ridha, A.M., Hussien, N.A., 2016. Removal of zinc ions from aqueous solution by bioadsorbents and CNTs. American Journal of Materials Science 6(4), 105–114. https://doi.org/10.5923/j.materials.20160604.04.
    Nasrullah, A., Khan, H., Khan, A., Man, Z., Muhammad, N., Khan, M., Abd El-Salam, N., 2015. Potential biosorbent derived from calligonum polygonoides for removal of methylene blue dye from aqueous solution. The Scientific World Journal (2015), 562693. https://doi.org/10.1155/2015/562693.
    Ngah, W.S.W., Hanafiah, M.A.K.M., 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology 99(10), 3935–3948. https://doi.org/10.1016/j.biortech.2007.06.011.
    Pellera, F., Giannis, A., Anastasiadou, K., Kalderis, D., Pentari, D., Gidarakos, E., 2010. Adsorption of Cu(II) ions from aqueous solutions using biochar prepared from agricultural byproducts. Journal of Environmental Management 96(1), 35–42. https://doi.org/10.1016/j.jenvman.2011.10.010.
    Ponnusami, V., Vikram, S., Srivastava, S.N., 2008. Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions. Journal of Hazardous Materials 152(1), 276–286. https://doi.org/10.1016/j.jhazmat.2007.06.107.
    Pragathiswaran, C., Sibi, S., Sivanesan, P., 2013. Adsorption of hexavalent chromium from aqueous solutions by Aloe vera leaf. International Journal of Research in Pharmacy and Chemistry 3, 876–880.
    Reena, M., Suman, L., Sushila, S., 2015. Removal of heavy metals from waste water by the use of modified Aloe vera leaf powder. International Journal of basic and Applied Chemical Science 5(2), 617.
    Rehman, H., Shakirullah, M., Ahmad, I., Shah, S., Hamedullah. 2006. Sorption studies of nickel ions onto sawdust of Dalbergia sissoo. Journal of the Chinese Chemical Society 53(5), 1045–1052. https://doi.org/10.1002/jccs.200600139.
    Sar?, A., Tuzen, M., Uluozlü, O.D, Soylak, M., 2007. Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladoni afurcata) biomass. Biochemical Engineering Journal 37(2), 151–158. https://doi.org/10.1016/j.bej.2007.04.007.
    Sharma, R., Singh, B., 2013. Removal of Ni(II) ions from aqueous solutions using modified rice straw in a fixed bed column. Bioresource Technology 146, 519–524. https://doi.org/10.1016/j.biortech.2013.07.146.
    Shouman, M.A.H., Khedr, S.A.A., 2015. Removal of cationic dye from aqueous solutions by modified acid-treated pomegranate peels (Punica granatum): Equilibrium and kinetic studies. Asian Journal of Applied Sciences 3(4), 1–15.
    Shukla, S.S, Yu, L.J., Dorries, K.L.. Shukla, A., 2005. Removal of Nickel from aqueous  solutions by sawdust. Journal of Hazardous Materials 121(1–3), 243–246. https://doi.org/10.1016/j.jhazmat.2004.11.025.
    Shukla, S.R., Pai, R.S., Shendarkar, A.D., 2006. Adsorption of Ni(II), Zn(II) and Fe(II) on modified coir fibres. Separation and Purification Technology 47(3), 141–147. https://doi.org/10.1016/j.seppur.2005.06.014.
    Singh, H., Chauhan, G., Jain, A.K., Sharma, S.K., 2017a. Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. Journal of Environmental Chemical Engineering 5(1), 122–135. https://doi.org/10.1016/j.jece.2016.11.030.
    Singh, K., Sharma, S.K., Jain, A., Mandal, M., Pandey, P.K., 2017b. Removal of copper ion from synthetic wastewater using Aloe vera as an adsorbent. European Journal of Advances in Engineering and Technology 4(4), 249–254.
    Srivastava, P., Hasan, S.H., 2011. Biomass of Mucor Heimalis for the biosorption of Cadmium from aqueous solution. Bioresources 6(4), 3656–3675.
    Temkin, M.J., Pyzhev, V., 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochimica URSS 12, 217–222.
    Tripathi, V., Srivastava, S., Dwivedi, A., 2016. Aloe vera Burm. F. A potential botanical tool for bioremediation of arsenic. Scholars Journal of Agriculture and Veterinary Sciences 3(7), 480–482. https://doi.org/10.21276/sjavs.2016.3.7.6.
    Verma, N., Rheal, R., 1994. Bioscavenging of Cu(II) ions from aqueous solution with rice bran. Bioresource Technology 9(3), 277–278. https://doi.org/10.1016/0960-8524(94)90053-1.
    Wang, L., Zhang, J., Zhao, R., Li, Y., Li, C., Zhang, C., 2010. Adsorption of Pb(II) on activated carbon prepared from Polygonumorientale Linn.: Kinetics isotherms, pH, and ionic strength studies. Bioresource Technology 101(15), 5808–5814. https://doi.org/10.1016/j.biortech.2010.02.099.
    Weber, W.J., Jr., Morris, J.C., 1963. Kinetics of adsorption of carbon from solution. Journal of the Sanitary Engineering Division 89(1), 31–59.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (811) PDF downloads(626) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return