Citation: | Xiao-dong Liu, Ling-qi Li, Peng Wang, Zu-lin Hua, Li Gu, Yuan-yuan Zhou, Lu-ying Chen. 2019: Numerical simulation of wind-driven circulation and pollutant transport in Taihu Lake based on a quadtree grid. Water Science and Engineering, 12(2): 108-114. doi: 10.1016/j.wse.2019.05.001 |
An, H., Yu, S., 2014. An accurate multidimensional limiter on quadtree grids for shallow water flow simulation. Journal of Hydraulic Research 52(4), 565-574. https://doi.org/10.1080/00221686.2013.878404.
|
Bennett, J.R., Clites, A.H., 1987. Accuracy of trajectory calculation in a finite-difference circulation model. Journal of Computational Physics 68(2), 272-282. https://doi.org/10.1016/0021-9991(87)90058-1.
|
Borthwick, A.G.L., Leon, S.C., Jozsa, J., 2001. Adaptive quadtree model of shallow-flow hydrodynamics. Journal of Hydraulic Research 39(4), 413-424. https://doi.org/10.1080/00221680109499845.
|
Cho, Y.-S., Park, K.-Y., Lin, T.-H., 2004. Run-up heights of nearshore tsunamis based on quadtree grid system. Ocean Engineering 31(8), 1093-1109. https://doi.org/10.1016/j.oceaneng.2003.10.011.
|
Copeland, G., Monteiro, T., Couch, S., Borthwick, A., 2003. Water quality in Sepetiba Bay, Brazil. Marine Environmental Research 55(5), 385-408. https://doi.org/10.1016/S0141-1136(02)00289-1.
|
Dadone, A., Grossman, B., 2007. Ghost-cell method for analysis of inviscid three-dimensional flows on Cartesian-grids. Computers and Fluids 36(10), 1513-1528. https://doi.org/10.1016/j.compfluid.2007.03.013.
|
DeZeeuw, D., Powell, K.G., 1993. An adaptively refined Cartesian mesh solver for the Euler equations. Journal of Computational Physics 104(1), 56-68. https://doi.org/10.1006/jcph.1993.1007.
|
Gáspár, C., Józsa, J., Sarkkula, J., 1994. Shallow lake modelling using quadtree-based grids. In: Proceedings of the 10th Conference on Computational Methods in Water Resources. Heidelberg, pp. 1053-1063. https://doi.org/10.1007/978-94-010-9204-3_127.
|
Greaves, D.M., Borthwick, A.G.L., Wu, G.X., Eatock Taylor, R., 1997. A moving boundary finite element method for fully nonlinear wave simulations. Journal of Ship Research 41(3), 181-194.
|
Greaves, D.M., Borthwick, A.G.L., 1998. On the use of adaptive hierarchical meshes for numerical simulation of separated flows. International Journal for Numerical Methods in Fluids 26(3), 303-322. https://doi.org/10.1002/(SICI)1097-0363(19980215)26:3<303::AID-FLD643>3.0.CO;2-Y.
|
Hemker, P.W., Spekreijse, S.P., 1985. Multigrid solution of the steady Euler equations. In: Braess, D., Hackbusch, W., Trottenberg, U., eds., Advances in Multi-Grid Methods. Vieweg+Teubner Verlag, Wiesbaden, pp. 33-44. https://doi.org/10.1007/978-3-663-14245-4_4.
|
Hua, Z., Liu, X., Wang, T., Lu, X., 2003. Application of the nested adaptive quadtree grids FDS numerical model to the pollution zone for inshore water region. Advances in Water Science 14(2), 305-310 (in Chinese). https://doi.org/10.3321/j.issn:1001-6791.2003.03.011.
|
Jiang, H.F., 2014. Triangle interpolation on discrete point set. Applied Mechanics and Materials 580-583, 2872-2875. https://doi.org/10.4028/www.scientific.net/AMM.580-583.2872.
|
Kranenburg, C., 1992. Wind-driven chaotic advection in a shallow model lake. Journal of Hydraulic Research 30(1), 29-46. https://doi.org/10.1080/00221689209498945.
|
Liang, Q.H., Borthwick, A.G.L., Stelling, G., 2004. Simulation of dam- and dyke-break hydrodynamics on dynamically adaptive quadtree grids. International Journal for Numerical Methods in Fluids 46(2), 127-162. https://doi.org/10.1002/fld.748.
|
Liang, Q.H., Zang, J., Borthwick, A.G.L., Taylor, P.H., 2007. Shallow flow simulation on dynamically adaptive cut cell quadtree grids. International Journal for Numerical Methods in Fluids 53(12), 1777-1799. https://doi.org/10.1002/fld.1363.
|
Lima, A., De Vivo, B., Cicchella, D., Cortini, M., Albanese, S., 2003. Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of (Italy), Campania region. Applied Geochemistry 18(12), 1853-1865. https://doi.org/10.1016/S0883-2927(03)00083-0.
|
Rogers, B., Fujihara, M., Borthwick, A.G.L., 2001. Adaptive Q-tree Godunov-type scheme for shallow water equations. International Journal for Numerical Methods in Fluids 35(3), 247-280. https://doi.org/10.1002/1097-0363(20010215)35:3<247::AID-FLD89>3.0.CO;2-E.
|
Samet, H., 1990. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley.
|
Skoula, Z.D., Borthwick, A.G.L., Moutzouris, C. I., 2006. Godunov-type solution of the shallow water equations on adaptive unstructured triangular grids. International Journal of Computational Fluid Dynamics 20(9), 621-636. https://doi.org/10.1080/10618560601088327.
|
Sleigh, P.A., Gaskell, P.H., Berzins, M., Wright, N.G., 1998. An unstructured finite-volume algorithm for predicing flow in rivers and estuaries. Comput Fluids 27(4), 479-508. https://doi.org/10.1016/S0045-7930(97)00071-6.
|
Surhone, L.M., Tennoe, M.T., Henssonow, S.F., 2013. Nearest-neighbor Interpolation. Betascript Publishing, Mauritius.
|
Tait, A., Henderson, R., Turner, R., Zheng, X.G. 2006. Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface. International Journal of Climatology 26(14), 2097-2115. https://doi.org/10.1002/joc.1350.
|
Tavakoli, R., 2008. CartGen: Robust, efficient and easy to implement uniform/octree/embedded boundary Cartesian grid generator. International Journal for Numerical Methods in Fluids 57(12), 1753-1770. https://doi.org/10.1002/fld.1685.
|
Yerry, M.A., Shephard, M.S., 1983. A modified quadtree approach to finite element mesh generation. IEEE Computer Graphics and Applications 3(1), 39-46. https://doi.org/10.1109/MCG.1983.262997.
|
Zhang, M.L., Wu, W.M., Lin, L.H., Yu, J.N., 2012. Coupling of wave and current numerical model with unstructured quadtree grid for nearshore coastal waters. Science China Technological Sciences 55(2), 568-580. https://doi.org/10.1007/s11431-011-4643-2.
|
Zhao, D.H., Shen, H.W., Tabios III, G.Q., Lai, J.S., Tan W.Y.,1994. Finite-volume two-dimensional unsteady-flow model for river basins. Journal of Hydraulic Engineering 120(7), 863-883. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:7(863).
|