Volume 12 Issue 2
Jun.  2019
Turn off MathJax
Article Contents
Fang-fang Wang, Shi-qiang Wu, Sen-lin Zhu. 2019: Numerical simulation of flow separation over a backward-facing step with high Reynolds number. Water Science and Engineering, 12(2): 145-154. doi: 10.1016/j.wse.2019.05.003
Citation: Fang-fang Wang, Shi-qiang Wu, Sen-lin Zhu. 2019: Numerical simulation of flow separation over a backward-facing step with high Reynolds number. Water Science and Engineering, 12(2): 145-154. doi: 10.1016/j.wse.2019.05.003

Numerical simulation of flow separation over a backward-facing step with high Reynolds number

doi: 10.1016/j.wse.2019.05.003
Funds:  This work was supported by the National Natural Science Foundation of China (Grant No. 51379128).
More Information
  • Corresponding author: Shi-qiang Wu
  • Received Date: 2018-08-11
  • Rev Recd Date: 2019-02-18
  • Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices. In this study, LES and κ-ε models were developed for a specific geometrical configuration of backward-facing step (BFS). The simulation results were validated with particle image velocimetry (PIV) measurements and direct numerical simulation (DNS). This LES simulation was carried out with a Reynolds number of 9000 in a pressurized water tunnel with an expansion ratio of 2.00. The results indicate that the LES model can reveal large-scale vortex motion although with a larger grid-cell size. However, the LES model tends to overestimate the top wall separation and the Reynolds stress components for the BFS flow simulation without a sufficiently fine grid. Overall, LES is a potential tool for simulating separated flow controlled by large-scale vortices.

     

  • loading
  • Aider, J.A., Danet, A., Lesieur, M., 2007. Large-eddy simulation applied to study the influence of upstream conditions on the time-dependant and averaged characteristics of a backward-facing step flow.  Journal of Turbulence 8, 1-30. https://doi.org/10.1080/14685240701701000.
    Armaly, B.F., Durst, F., Pereira, J.C.F., Schönung, B., 1983. Experimental and theoretical investigation of backward-facing step flow. Journal of fluid Mechanics 127(1), 473-496. https://doi.org/10.1017/S0022112083002839.
    Barri, M., Khoury, G.K.E., Andersson, H.I., Pettersen, B., 2010. DNS of backward-facing step flow with fully turbulent inflow. International Journal for Numerical Methods in Fluids 64(7), 777-792. https://doi.org/10.1002/fld.2176.
    Bouterra, M., Mehrez, Z., Cafsi, A.E., 2011. Control of local mass transfer in the separated and reattaching flow by a periodic forcing. Journal of Applied Fluid Mechanics 4(2), 63-67.
    Bradshaw, P., Wong, F.Y.F., 1972. The reattachment and relaxation of a turbulent shear layer. Journal of Fluid Mechanics 52(1), 113-135. https://doi.org/10.1017/S002211207200299X.
    Ding, D.Y., Wu, S.Q., 2012. Direct numerical simulation of turbulent flow over backward-facing at high Reynolds numbers. Science China Technological Sciences 55(11), 3213-3222. https://doi.org/10.1007/s11431-012-5006-3.
    Eaton, J.K., Johnston, J.P., 1981. A review of research on subsonic turbulent flow reattachment. AIAA Journal 19(9), 1093-1100. https://doi.org/10.2514/3.60048.
    Essel, E.E., Tachie, M.F., 2015. Roughness effects on turbulent flow downstream of a backward facing step. Flow, Turbulence and Combustion 94(1), 125-153. https://doi.org/10.1007/s10494-014-9549-1.
    Fan, X.J., Wu, S.Q., Zhou, H., Xiao, X., Wang, Y., 2015. Investigation on the characteristics of water flow over a backward facing step under high Reynolds number with particle image velocimetry. In: Proceedings of International Conference on Industrial Technology and Management Science, Atlantis Press, Tianjin, pp. 262-266.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H., 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics 7(3), 1760-1765. https://doi.org/10.1063/1.857955.
    Jovic, S., Driver, D.M., 1994. Backward-facing step measurements at low Reynolds number, Reh=5000. National Aeronautics and Space Administration Ames Research Center, Moffett Field.
    Keating, A., Piomelli, U., Bremhorst, K., Nesic, S., 2004. Large-eddy simulation of heat transfer downstream of a backward-facing step. Journal of Turbulence 5(20), 1-27. https://doi.org/10.1088/1468-5248/5/1/020.
    Kobayashi, T., Morinishi, Y., Oh, K.J., 1992. Large eddy simulation of backward-facing step flow. International Journal for Numerical Methods in Biomedical Engineering 8(7), 431-441. https://doi.org/10.1002/cnm.1630080703.
    Kopera, M.A., Kerr, R.M., Blackburn, H.M., 2014. Direct numerical simulation of turbulent flow over a backward-facing step. Journal of Fluid Mechanics 1-24. https://doi.org/10.1017/S0022112096003941.
    Kostas, J., Soria, J., Chong, M., 2002. Particle image velocimetry measurements of a backward-facing step flow. Experiments in Fluids 33(6), 838-853. https://doi.org/10.1007/s00348-002-0521-9.
    Le, H., Moin, P., Kim, J., 1997. Direct numerical simulation of turbulent flow over a backward-facing step. Journal of Fluid Mechanics 330(1), 349-374. https://doi.org/10.1017/S0022112096003941.
    Lilly, D.K., 1966. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Manuscripts, 1-19. https://doi.org/10.5065/D67H1GGQ.
    Lilly, D.K., 1992. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A: Fluid Dynamics 4(3), 633. https://doi.org/10.1063/1.858280.
    Panjwani, B., Ertesvag, I.S., Gruber, A., Rian, K.E., 2009. Large eddy simulation of backward facing step flow. In: Proceedings of the 5th National Conference on Computational Mechanics.
    Piirto, M., Karvinen, A., Ahlstedt, H., Saarenrinne, P., Karvinen, R., 2007. PIV measurements in square backward-facing step. Journal of Fluids Engineering 129(8), 984-990. https://doi.org/10.1115/1.2746896.
    Pope, S.B., 2000. Turbulent Flows. Cambridge University Press, Cambridge.
    Ratha, D., Sarkar, A., 2015. Analysis of flow over backward facing step with transition. Frontiers of Structural and Civil Engineering 9(1), 71-81. https://doi.org/10.1007/s11709-014-0270-x.
    Sarwar, M.M., Moinuddin, K.A., Thorpe, G.R., 2013. Large eddy simulation of flow over a backward facing step using fire dynamics simulator (FDS). In: Proceedings of the 14th Asian Congress of Fluid Mechanics. Hanoi and Halong, pp. 469-474.
    Scarano, F., Benocci, C., Riethmuller, M.L., 1999. Pattern recognition analysis of the turbulent flow past a backward facing step. Physics of Fluids 11(12), 3808-3818. https://doi.org/10.1063/1.870240.
    Schäfer, F., Breuer, M., Durst, F., 2009. The dynamics of the transitional flow over a backward-facing step. Journal of Fluid Mechanics 623, 85-119. https://doi.org/10.1017/S0022112008005235.
    Schram, C., Rambaud, P., Riethmuller, M.L., 2004. Wavelet based eddy structure eduction from a backward facing step flow investigated using particle image velocimetry. Experiments in Fluids 36(2), 233-245. https://doi.org/10.1007/s00348-003-0695-9.
    Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review 91(3), 99-164. https://doi.org/10.1175/15200493(1963)091<0099:GCEWTP>2.3.CO;2.
    Velikorodny, A., Duck, G., Oshkai, P., 2010. Experimental investigation of flow over a backward-facing step in proximity to a flexible wall. Experiments in Fluids 49(1), 167-181. https://doi.org/10.1007/s00348-010-0822-3.
    Yang, Z., Abdalla, I.E., 2005. Effects of free-stream turbulence on large-scale coherent structures of separated boundary layer transition. International Journal for Numerical Methods in Fluids 49(3), 331-348. https://doi.org/10.1002/fld.1014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (532) PDF downloads(447) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return