Citation: | Ji-xiang Huo, Fu-heng Ma, Xiao-lei Ji. 2019: Porosity and permeability variations of a dam curtain during dissolution. Water Science and Engineering, 12(2): 155-161. doi: 10.1016/j.wse.2019.05.007 |
Appelo, C.A.J., Rolle, M., 2010. PHT3D: A reactive multicomponent transport model for saturated porous media. Groundwater, 48(5), 627-632. https://doi.org/10.1111/j.1745-6584.2010.00732.x.
|
Bernstone, C., Westberg, M., Jeppsson, J., 2009. Structural assessment of a concrete dam based on uplift pressure monitoring. Journal of Geotechnical and Geoenvironmental Engineering, 135(1), 133-142. https://doi.org/10.1061/(asce)1090-0241(2009)135:1(133).
|
Catherine C., Gouze P., Bernard, D., 2004. Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophysical Research Letters, 31(24), L24603. https://doi.org/10.1029/2004gl021572.
|
Cochepin, B., Trotignon, L., Bildstein, O., Steefel, C.I., Lagneau, V., van der Lee, J., 2008. Approaches to modelling coupled flow and reaction in a 2D cementation experiment. Advances in Water Resources, 31(12), 1540-1551. https://doi.org/10.1016/j.advwatres.2008.05.007.
|
Gouze, P., Luquot, L., 2011. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution. Journal of Contaminant Hydrology, 120-121(1), 45-55. https://doi.org/10.1016/j.jconhyd.2010.07.004.
|
Hummer, D.R., Heaney, P.J., 2015. MinKin: A kinetic modeling program for the precipitation, dissolution, and phase transformation of minerals in aqueous solution. Chemical Geology, 405(5), 112-122. https://doi.org/10.1016/j.chemgeo.2015.03.019.
|
Huo, J.-X., Song, H.-Z., Luo, L., 2015. Investigation of groundwater chemistry at a dam site during its construction: A case study of Xiangjiaba Dam, China. Environmental Earth Sciences, 74(3), 2451-2461. https://doi.org/10.1007/s12665-015-4261-6.
|
Kang, Q., Chen, L., Valocchi, A.J., Viswanathan, H.S., 2014. Pore-scale study of dissolution-induced changes in permeability and porosity of porous media. Journal of Hydrology, 517(Supplement C), 1049-1055. https://doi.org/10.1016/j.jhydrol.2014.06.045.
|
Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., et al., 2012. OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2), 589-599. https://doi.org/10.1007/s12665-012-1546-x.
|
Li, X.C., Zhong, D.H., Ren, B.Y., Fan, G.C., Cui, B., 2019. Prediction of curtain grouting efficiency based on ANFIS. Bulletin of Engineering Geology and the Environment, 78(1), 281-309. https://doi.org/10.1007/s10064-017-1039-y.
|
Lichtner, P., Karra, S., Hammond, G., Lu, C., Bisht, G., Kumar, J., Mills, R., Andre, B., 2015. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes. Los Alamos National Laboratory (LANL). https://doi.org/10.2172/1168703.
|
Luquot, L., Rodriguez, O., Gouze, P., 2014. Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes. Transport in Porous Media, 101(3), 507-532. https://doi.org/10.1007/s11242-013-0257-4.
|
Maheshwari, P., Ratnakar, R.R., Kalia, N., Balakotaiah, V., 2013. 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks. Chemical Engineering Science, 90(Supplement C), 258-274. https://doi.org/10.1016/j.ces.2012.12.032.
|
Mahtabi, G., Taran, F., 2019. Effect of weep hole and cut-off wall on hydraulic gradient and uplift pressure under a diversion dam. Sādhanā, 44(4). https://doi.org/10.1007/s12046-019-1083-3.
|
Meeussen, J.C.L., 2003. ORCHESTRA: An object-oriented framework for implementing chemical equilibrium models. Environmental Science & Technology, 37(6), 1175-1182. https://doi.org/10.1021/es025597s.
|
Nogues, J.P., Fitts, J.P., Celia, M.A., Peters, C.A., 2013. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resources Research, 49(9), 6006-6021. https://doi.org/10.1002/wrcr.20486.
|
Parkhurst, D.L., Appelo, C.A.J., 2013. Description of input and examples for PHREEQC Version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In: U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43. U.S. Department of the Interior, U.S. Geological Survey. https://doi.org/10.3133/tm6a43.
|
Rötting, T.S., Luquot, L., Carrera, J., Casalinuovo, D.J., 2015. Changes in porosity, permeability, water retention curve and reactive surface area during carbonate rock dissolution. Chemical Geology, 403(Supplement C), 86-98. https://doi.org/10.1016/j.chemgeo.2015.03.008.
|
Ruiz-Agudo, E., Kudlacz, K., Putnis, C.V., Putnis, A., Rodriguez-Navarro, C., 2013. Dissolution and carbonation of portlandite
|
[Ca(OH)2] single crystals. Environmental Science & Technology, 47(19), 11342-11349. https://doi.org/10.1021/es402061c.
|
Steefel, C.I., DePaolo, D.J., Lichtner, P.C., 2005. Reactive transport modeling: An essential tool and a new research approach for the earth sciences. Earth and Planetary Science Letters, 240(3), 539-558. https://doi.org/10.1016/j.epsl.2005.09.017.
|
Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., et al., 2015. Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 19(3), 445-478. https://doi.org/10.1201/9781315369044-19.
|
Tsai, C.-H.P., Yeh, G.-T.G., Ni, C.-F., 2013. HYDROGEOCHEM 6.0: A Model to Couple Thermal-Hydrology-Mechanics-Chemical (THMC) Processes User Guide. National Central University, Jhongli.
|
Wang, E.Z., Wang, H.T., Deng, X.D., 2001. Pipe to represent hole: Numerical method for simulating single drainage hole in rock-masses. Chinese Journal of Rock Mechanics and Engineering, 20(3), 346-349 (in Chinese). https://doi.org/10.3321/j.issn:1000-6915.2001.03.015.
|
Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K., 2011. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Computers & Geosciences, 37(6), 763-774. https://doi.org/10.1016/j.cageo.2010.10.007.
|
Zhao, C., Hobbs, B.E., Ord, A., Peng, S., 2010. Effects of mineral dissolution ratios on chemical-dissolution front instability in fluid-saturated porous media. Transport in Porous Media, 82(2), 317-335. https://doi.org/10.1007/s11242-009-9427-9.
|