Volume 12 Issue 3
Sep.  2019
Turn off MathJax
Article Contents
Maryam Azarpira, Amir Reza Zarrati. 2019: A 3D analytical model for vortex velocity field based on spiral streamline pattern. Water Science and Engineering, 12(3): 244-252. doi: 10.1016/j.wse.2019.09.001
Citation: Maryam Azarpira, Amir Reza Zarrati. 2019: A 3D analytical model for vortex velocity field based on spiral streamline pattern. Water Science and Engineering, 12(3): 244-252. doi: 10.1016/j.wse.2019.09.001

A 3D analytical model for vortex velocity field based on spiral streamline pattern

doi: 10.1016/j.wse.2019.09.001
Funds:  This work was supported by the Iran National Science Foundation (INSF, Grant No. 97008045).
More Information
  • Corresponding author: Amir Reza Zarrati
  • Received Date: 2018-03-09
  • Rev Recd Date: 2019-06-11
  • Vortices that develop over intakes are a hazardous hydraulic phenomenon. In this study, a 3D model was developed to study the flow field in air-core vortices. This model is based on the spiral pattern of streamlines and the analytical solution of the momentum and continuity equations for deriving the three components of velocity. The model provides equations for free surface profiles and 3D patterns of the streamlines. Moreover, a new relationship was suggested for calculating effective viscosity and its distribution across the vortex flow field. The performance of the proposed analytical model was compared with existing experimental data and the results of previous analytical models. The outcomes indicated that the proposed model could predict characteristics of the vortex flow with good accuracy.

     

  • loading
  • Aboelkassem, Y., 2003. On the Decay of Strong Concentrated Columnar Vortices. Ph. D. Dissertation. Concordia University, Montreal.
    Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B., 2006. The bathtub vortex in a rotating container. J. Fluid Mech. 556, 121–146. https://doi.org/10.1017/S0022112006009463.
    Anwar, H.O., Amimilett, M.B., 1980. Vortices at vertically inverted intake. J. Hydraul. Res. 18(2), 123–134. https://doi.org/10.1080/00221688009499556.
    Azarpira, M., Rahmati, R., Zarrati, A.R., 2016. Investigation of the vortex velocity field with different air core depth on the vertical intake. In: Proceedings of the 15th Iranian Hydraulics Conference. Imam Khomeini International University, Qazvin (In Persian).
    Bhagwat, M.J., Leishman, J.G., 2002. Generalized viscous vortex model for application to free-vortex wake and aeroacoustic calculations. In: Proceedings of the 58th Annual Forum and Technology Display of the American Helicopter Society International, Montreal.
    Chen, Y., Wu, C., Ye, M., Ju, X., 2007. Hydraulic characteristics of vertical vortex at hydraulic intakes. J. Hydrodyn. Ser. B 19(2), 143–149. https://doi.org/10.1016/S1001-6058(07)60040-7.
    Constantinescu, G.S., Patel, V.C., 2000. Role of turbulence model in prediction of pump-bay vortices. J. Hydraul. Eng. 126(5), 387–391. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:5(387).
    Daggett, L.L., Keulegan, G.H., 1974. Similitude conditions in free-surface vortex formations. Journal of the Hydraulics Division, 170(11), 1565–1580.
    Einstein, H.A., Li, H., 1951. Steady vortex flow in a real fluid. In: Proceedings of 1951 Heat Transfer and Fluid Mechanics Institute. Stanford University, Stanford, pp. 33–43.
    Gulliver, J.S., 1988. Discussion of “Free-Surface Air Core Vortex” by A. Jacob Odgaard (July, 1986, Vol. 112, No. 7). J. Hydraul. Eng. 114(4), 447–449. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:4(447).
    Guyot, G., Maaloul, H., Archer, A., 2014. A vortex modeling with 3D CFD. In: Gourbesville, P., Cunge, J., Caignaert, G., eds., Advances in Hydroinformatics. Springer Singapore, Singapore, pp. 433–444. https://doi.org/10.1007/978-981-4451-42-0_35.
    Hecker, G.A., 1987. Fundamentals of vortex intake flow. In: Knauss, J., ed., IAHR Hydraulic Structures Design Manual 1: Swirling Flow Problems at Intakes. Balkema, Rotterdam.
    Hite Jr., J.E., Mih, W.C., 1994. Velocity of air-core vortices at hydraulic intakes. J. Hydraul. Eng. 120(3), 284–297. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:3(284).
    Jain, A., Ranga Raju, K.G., Garde, R.J., 1978. Vortex formation at vertical pipe intakes. J. Hydraul. Div. 104(10), 1429–1445.
    Julien, P.Y., 1986. Concentration of very fine silts in a steady vortex. J. Hydraul. Res. 24(4), 255–264. https://doi.org/10.1080/00221688609499304.
    Li, H.F., Chen, H.X., Ma, Z., Zhou, Y., 2008. Experimental and numerical investigation of free surface vortex. J. Hydrodyn. 20(4), 485–491. https://doi.org/10.1016/S1001-6058(08)60084-0.
    Lucino, C., Duró, G., Liscia, S., 2010. Vortex detection in pump sumps by means of CFD. In: Proceedings of XXIV Latin American Congress on Hydraulics. IAHR-AIIH, Punta Del Este.
    Möller, G., Detert, M., Boes, R.M., 2015. Vortex-induced air entrainment rates at intakes. J. Hydraul. Eng. 141(11), 1–8. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001036.
    Naderi, V., Gaskin, S., 2018. A 3D study of an intake air-core vortex structure using PIV & flow visualization. In: Bung, D., Tullis, B., eds., Proceedings of 7th IAHR International Symposium on Hydraulic Structures. IAHR, Aachen.
    Newman, B.G., 1959. Flow in a viscous trailing vortex. Aeronaut. Q. 10(2), 149–162.
    https://doi.org/10.1017/s0001925900001554.
    Odgaard, A.J., 1986. Free-surface air core vortex. J. Hydraul. Eng. 112(7), 610–620. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610).
    Okamura, T., Kamemoto, K., Matsui, J., 2007. CFD prediction and model experiment on suction vortices in pump sump. In: Proceedings of the 9th Asian International Conference on Fluid Machinery. Jeju, pp. 1–10.
    Quick, M.C., 1962. Scale relationships between geometrically similar free spiral vortices. Civil Eng. Public Works Rev. 57(10), 1319–1320.
    Rajendran, V.P., Constantinescu, S.G., Patel, V.C., 1999. Experimental validation of numerical model pump-intake bays. J. Hydraul. Eng. 125(11), 1119–1125. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1119).
    Rajendran, V.P., Patel, V.C., 2000. Measurement of vortices in model pump-intake bay by PIV. J. Hydraul. Eng. 126(5), 322–334. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:5(322)
    Rankine, W.J.M., 1858. A Manual of Applied Mechanics. Charles Griffin, London.
    Rouse, H., 1963. On the role of eddies in fluid motion. American Scientist, 51(3), 285–314.
    Sarkardeh, H., Zarrati, A.R., Roshan, R., 2010. Effect of intake head wall and trash rack on vortices. J. Hydraul. Res. 48(1), 108–112. https://doi.org/10.1080/00221680903565952.
    Scully, M.P., 1975. Computation of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Airloads. Ph. D. Dissertation. Massachusetts Institute of Technology, Cambridge.
    Spurk, J.H., Aksel, N., 2008. Fluid Mechanics. Springer, Berlin.
    Suerich-Gulick, F., Gaskin, S., Villeneuve, M., Holder, G., Parkinson, E., 2006. Experimental and numerical analysis of free surface vortices at a hydropower intake. In: Proceedings of the 7th International Conference in Hydroscience and Engineering.  Philadelphia, pp. 1–11.
    Suerich-Gulick, F., Gaskin, S., Villeneuve, M., Parkinson, E., 2014. Free surface intake vortices: Theoretical model and measurements. J. Hydraul. Res. 52(4), 502–512. https://doi.org/10.1080/00221686.2014.896425.
    Sun, H.L., Liu, Y.K., 2015. Theoretical and experimental study on the vortex at hydraulic intakes. J. Hydraul. Res. 53(6), 787–796. https://doi.org/10.1080/00221686.2015.1076533.
    Vatistas, G.H., Kozel, V., Mih, W.C., 1991. A simpler model for concentrated vortices. Exp. Fluids 11(1), 73–76. https://doi.org/10.1007/BF00198434.
    Vischer, D.L., Hager, W.H., Cischer, D., 1998. Intake structures. In: Dam Hydraulics. John Wiley Sons, Chichester, pp. 215–232.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (514) PDF downloads(584) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return