Citation: | Jun-hui Fan, Xing-yu Liu, Qi-yuan Gu, Ming-jiang Zhang, Xue-wu Hu. 2019: Effect of hydraulic retention time and pH on oxidation of ferrous iron in simulated ferruginous acid mine drainage treatment with inoculation of iron-oxidizing bacteria. Water Science and Engineering, 12(3): 213-220. doi: 10.1016/j.wse.2019.09.003 |
Ayala-Parra, P., Sierra-Alvarez, R., Field, J.A., 2016. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron. Journal of Hazardous Materials 308, 97-105. https://doi.org/10.1016/j.jhazmat.2016.01.029.
|
Chen, M., Lu, G., Guo, C., Yang, C., Wu, J., Huang, W., Yee, N., Dang, Z., 2015. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chemosphere 119, 734-743. https://doi.org/10.1016/j.chemosphere.2014.07.094.
|
Gahan, C.S., Sundkvist, J.E., Dopson, M., Sandstrom, A., 2010. Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture. Biotechnology and Bioengineering 106(3), 422-431. https://doi.org/10.1002/bit.22709.
|
Gan, M., Li, M.M., Zeng, J., Liu, X.X., Zhu, J.Y., Hu, Y.H., Qiu, G.Z. 2017. Acidithiobacillus ferrooxidans enhanced heavy metals immobilization efficiency in acidic aqueous system through bio-mediated coprecipitation. Transactions of Nonferrous Metals Society of China 27(5), 1156-1164. https://doi.org/10.1016/S1003-6326(17)60135-3.
|
Hedrich, S., Johnson, D.B., 2012. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters. Bioresource Technology 106, 44-49. https://doi.org/10.1016/j.biortech.2011.11.130.
|
Johnson, D.B., Hallberg, K.B., 2005. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Science of Total Environment 338(1-2), 81-93. https://doi.org/10.1016/j.scitotenv.2004.09.008.
|
Jones, R.M., Johnson, D.B., 2016. Iron kinetics and evolution of microbial populations in low-pH, ferrous iron-oxidizing bioreactors. Environ. Sci. Technol. 50(15), 8239-8245. https://doi.org/10.1021/acs.est.6b02141.
|
Kaksonen, A.H., Puhakka, J.A., 2007. Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Engineering in Life Sciences 7(6), 541-564. https://doi.org/10.1002/elsc.200720216.
|
Liu, Z., Li, L., Li, Z., Tian, X., 2018. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Environ. Technol. 39(14), 1814-1822. https://doi.org/10.1080/09593330.2017.1340347.
|
Long, Z.E., Huang, Y.H., Cai, Z.L., Cong, W., Ouyang, F., 2004. Kinetics of continuous ferrous ion oxidation by Acidithiobacillus ferrooxidans immobilized in poly(vinyl alcohol) cryogel carriers. Hydrometallurgy 74(3-4), 181-187. https://doi.org/10.1016/j.hydromet.2004.03.006.
|
Macias, F., Caraballo, M.A., Nieto, J.M., Rotting, T.S., Ayora, C., 2012. Natural pretreatment and passive remediation of highly polluted acid mine drainage. J. Environ. Manage. 104, 93-100. https://doi.org/10.1016/j.jenvman.2012.03.027.
|
Masindi, V., Osman, M.S., Abu-Mahfouz, A.M., 2017. Integrated treatment of acid mine drainage using BOF slag, lime/soda ash and reverse osmosis (RO): Implication for the production of drinking water. Desalination 424, 45-52. https://doi.org/10.1016/j.desal.2017.10.002.
|
Murad, E., Rojík, P., 2003. Iron-rich precipitates in a mine drainage environment: Influence of pH on mineralogy. American Mineralogist, 88(11-12), 1915-1918. https://doi.org/10.2138/am-2003-11-1234.
|
Neculita, C.M., Zagury, G.J., Bussiere, B., 2007. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: Critical review and research needs. J. Environ. Qual. 36(1), 1-16. https://doi.org/10.2134/jeq2006.0066.
|
Nyquist, J., Greger, M., 2009. A field study of constructed wetlands for preventing and treating acid mine drainage. Ecological Engineering 35(5), 630-642. https://doi.org/10.1016/j.ecoleng.2008.10.018.
|
Pierre Louis, A.M., Yu, H., Shumlas, S.L., Van Aken, B., Schoonen, M.A., Strongin, D.R., 2015. Effect of phospholipid on pyrite oxidation and microbial communities under simulated acid mine drainage (AMD) conditions. Environ. Sci. Technol. 49(13), 7701-7708. https://doi.org/10.1021/es505374g.
|
Plante, B., Bussière, B., Benzaazoua, M., 2014. Lab to field scale effects on contaminated neutral drainage prediction from the Tio mine waste rocks. Journal of Geochemical Exploration 137, 37-47. https://doi.org/10.1016/j.gexplo.2013.11.004.
|
Vasquez, Y., Escobar, M.C., Saenz, J.S., Quiceno-Vallejo, M.F., Neculita, C.M., Arbeli, Z., Roldan, F., 2018. Effect of hydraulic retention time on microbial community in biochemical passive reactors during treatment of acid mine drainage. Bioresour. Technol. 247, 624-632. https://doi.org/10.1016/j.biortech.2017.09.144.
|
Weber, K.A., Achenbach, L.A., Coates, J.D., 2006. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4(10), 752-764. https://doi.org/10.1038/nrmicro1490.
|
Zhou, H., Sheng, Y., Zhao, X., Gross, M., Wen, Z., 2018. Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization. Bioresour. Technol. 264, 24-34. https://doi.org/10.1016/j.biortech.2018.05.051.
|